Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Cell Genom ; 4(3): 100507, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38417441

ABSTRACT

The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.


Subject(s)
Arabs , DNA, Ancient , Genetics, Population , Genome, Human , Humans , Arabs/genetics , Bahrain
2.
Metabolism ; 155: 155812, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360130

ABSTRACT

Obesity is a risk factor for severe respiratory diseases, including COVID-19 infection. Meta-analyses on mortality risk were inconsistent. We systematically searched 3 databases (Medline, Embase, CINAHL) and assessed the quality of studies using the Newcastle-Ottawa tool (CRD42020220140). We included 199 studies from US and Europe, with a mean age of participants 41.8-78.2 years, and a variable prevalence of metabolic co-morbidities of 20-80 %. Exceptionally, one third of the studies had a low prevalence of obesity of <20 %. Compared to patients with normal weight, those with obesity had a 34 % relative increase in the odds of mortality (p-value 0.002), with a dose-dependent relationship. Subgroup analyses showed an interaction with the country income. There was a high heterogeneity in the results, explained by clinical and methodologic variability across studies. We identified one trial only comparing mortality rate in vaccinated compared to unvaccinated patients with obesity; there was a trend for a lower mortality in the former group. Mortality risk in COVID-19 infection increases in parallel to an increase in BMI. BMI should be included in the predictive models and stratification scores used when considering mortality as an outcome in patients with COVID-19 infections. Furthermore, patients with obesity might need to be prioritized for COVID-19 vaccination.


Subject(s)
COVID-19 , Obesity , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/complications , COVID-19/epidemiology , Obesity/complications , Obesity/mortality , Obesity/epidemiology , Risk Factors , Pandemics , Body Mass Index , Coronavirus Infections/mortality , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Pneumonia, Viral/mortality , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Betacoronavirus , Comorbidity , Aged , Adult , Middle Aged
3.
Nat Ecol Evol ; 7(9): 1503-1514, 2023 09.
Article in English | MEDLINE | ID: mdl-37500909

ABSTRACT

Archaic admixture has had a substantial impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. In great apes, archaic admixture has been identified in chimpanzees and bonobos but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole-genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using approximate Bayesian computation with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, probably more than 40 thousand years ago and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Gorilla gorilla/genetics , Pan paniscus/genetics , Bayes Theorem , Hominidae/genetics , Pan troglodytes , Neanderthals/genetics
4.
Precis Clin Med ; 6(2): pbad015, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383672

ABSTRACT

Background: Populations of French Polynesia (FP), where France performed atmospheric tests between 1966 and 1974, experience a high incidence of differentiated thyroid cancer (DTC). However, up to now, no sufficiently large study of DTC genetic factors in this population has been performed to reach definitive conclusion. This research aimed to analyze the genetic factors of DTC risk among the native FP populations. Methods: We analyzed more than 300 000 single nucleotide polymorphisms (SNPs) genotyped in 283 DTC cases and 418 matched controls born in FP, most being younger than 15 years old at the time of the first nuclear tests. We analyzed the genetic profile of our cohort to identify population subgroups. We then completed a genome-wide analysis study on the whole population. Results: We identified a specific genetic structure in the FP population reflecting admixture from Asian and European populations. We identified three regions associated with increased DTC risk at 6q24.3, 10p12.2, and 17q21.32. The lead SNPs at these loci showed respective p-values of 1.66 × 10-7, 2.39 × 10-7, and 7.19 × 10-7 and corresponding odds ratios of 2.02, 1.89, and 2.37. Conclusion: Our study results suggest a role of the loci 6q24.3, 10p12.2 and 17q21.32 in DTC risk. However, a whole genome sequencing approach would be better suited to characterize these factors than genotyping with microarray chip designed for the Caucasian population. Moreover, the functional impact of these three new loci needs to be further explored and validated.

5.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35192718

ABSTRACT

The indigenous population of the United Arab Emirates (UAE) has a unique demographic and cultural history. Its tradition of endogamy and consanguinity is expected to produce genetic homogeneity and partitioning of gene pools while population movements and intercontinental trade are likely to have contributed to genetic diversity. Emiratis and neighboring populations of the Middle East have been underrepresented in the population genetics literature with few studies covering the broader genetic history of the Arabian Peninsula. Here, we genotyped 1,198 individuals from the seven Emirates using 1.7 million markers and by employing haplotype-based algorithms and admixture analyses, we reveal the fine-scale genetic structure of the Emirati population. Shared ancestry and gene flow with neighboring populations display their unique geographic position while increased intra- versus inter-Emirati kinship and sharing of uniparental haplogroups, reflect the endogamous and consanguineous cultural traditions of the Emirates and their tribes.


Subject(s)
Genetic Structures , Genetics, Population , Consanguinity , Geography , Humans , United Arab Emirates
6.
Cell ; 184(18): 4612-4625.e14, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34352227

ABSTRACT

The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15-20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East.


Subject(s)
Genetics, Population/history , Genome, Human , Animals , Chromosomes, Human, Y/genetics , Databases, Genetic , Gene Pool , Genetic Introgression , Geography , History, Ancient , Human Migration , Humans , Middle East , Models, Genetic , Neanderthals/genetics , Phylogeny , Population Density , Selection, Genetic , Sequence Analysis, DNA
7.
Sci Rep ; 11(1): 6659, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758277

ABSTRACT

Human Y chromosome haplogroup J1-M267 is a common male lineage in West Asia. One high-frequency region-encompassing the Arabian Peninsula, southern Mesopotamia, and the southern Levant-resides ~ 2000 km away from the other one found in the Caucasus. The region between them, although has a lower frequency, nevertheless demonstrates high genetic diversity. Studies associate this haplogroup with the spread of farming from the Fertile Crescent to Europe, the spread of mobile pastoralism in the desert regions of the Arabian Peninsula, the history of the Jews, and the spread of Islam. Here, we study past human male demography in West Asia with 172 high-coverage whole Y chromosome sequences and 889 genotyped samples of haplogroup J1-M267. We show that this haplogroup evolved ~ 20,000 years ago somewhere in northwestern Iran, the Caucasus, the Armenian Highland, and northern Mesopotamia. The major branch-J1a1a1-P58-evolved during the early Holocene ~ 9500 years ago somewhere in the Arabian Peninsula, the Levant, and southern Mesopotamia. Haplogroup J1-M267 expanded during the Chalcolithic, the Bronze Age, and the Iron Age. Most probably, the spread of Afro-Asiatic languages, the spread of mobile pastoralism in the arid zones, or both of these events together explain the distribution of haplogroup J1-M267 we see today in the southern regions of West Asia.


Subject(s)
Alleles , Chromosomes, Human, Y , Haplotypes , Bayes Theorem , Evolution, Molecular , Genetics, Population , Humans , Phylogeny , Polymorphism, Single Nucleotide , Spatio-Temporal Analysis
8.
Am J Hum Genet ; 107(1): 149-157, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32470374

ABSTRACT

The Iron and Classical Ages in the Near East were marked by population expansions carrying cultural transformations that shaped human history, but the genetic impact of these events on the people who lived through them is little-known. Here, we sequenced the whole genomes of 19 individuals who each lived during one of four time periods between 800 BCE and 200 CE in Beirut on the Eastern Mediterranean coast at the center of the ancient world's great civilizations. We combined these data with published data to traverse eight archaeological periods and observed any genetic changes as they arose. During the Iron Age (∼1000 BCE), people with Anatolian and South-East European ancestry admixed with people in the Near East. The region was then conquered by the Persians (539 BCE), who facilitated movement exemplified in Beirut by an ancient family with Egyptian-Lebanese admixed members. But the genetic impact at a population level does not appear until the time of Alexander the Great (beginning 330 BCE), when a fusion of Asian and Near Easterner ancestry can be seen, paralleling the cultural fusion that appears in the archaeological records from this period. The Romans then conquered the region (31 BCE) but had little genetic impact over their 600 years of rule. Finally, during the Ottoman rule (beginning 1516 CE), Caucasus-related ancestry penetrated the Near East. Thus, in the past 4,000 years, three limited admixture events detectably impacted the population, complementing the historical records of this culturally complex region dominated by the elite with genetic insights from the general population.


Subject(s)
DNA/genetics , Genetics, Population/history , Egypt , Ethnicity/genetics , Ethnicity/history , Genome, Human/genetics , Haplotypes/genetics , History, Ancient , Human Migration/history , Humans , Middle East
9.
Cell ; 179(4): 984-1002.e36, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675503

ABSTRACT

Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.


Subject(s)
Black People/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Genomics , Female , Gene Frequency/genetics , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , Uganda/epidemiology , Whole Genome Sequencing
10.
Genetics ; 212(4): 1421-1428, 2019 08.
Article in English | MEDLINE | ID: mdl-31196864

ABSTRACT

Present-day humans outside Africa descend mainly from a single expansion out ∼50,000-70,000 years ago, but many details of this expansion remain unclear, including the history of the male-specific Y chromosome at this time. Here, we reinvestigate a rare deep-rooting African Y-chromosomal lineage by sequencing the whole genomes of three Nigerian men described in 2003 as carrying haplogroup DE* Y chromosomes, and analyzing them in the context of a calibrated worldwide Y-chromosomal phylogeny. We confirm that these three chromosomes do represent a deep-rooting DE lineage, branching close to the DE bifurcation, but place them on the D branch as an outgroup to all other known D chromosomes, and designate the new lineage D0. We consider three models for the expansion of Y lineages out of Africa ∼50,000-100,000 years ago, incorporating migration back to Africa where necessary to explain present-day Y-lineage distributions. Considering both the Y-chromosomal phylogenetic structure incorporating the D0 lineage, and published evidence for modern humans outside Africa, the most favored model involves an origin of the DE lineage within Africa with D0 and E remaining there, and migration out of the three lineages (C, D, and FT) that now form the vast majority of non-African Y chromosomes. The exit took place 50,300-81,000 years ago (latest date for FT lineage expansion outside Africa - earliest date for the D/D0 lineage split inside Africa), and most likely 50,300-59,400 years ago (considering Neanderthal admixture). This work resolves a long-running debate about Y-chromosomal out-of-Africa/back-to-Africa migrations, and provides insights into the out-of-Africa expansion more generally.


Subject(s)
Chromosomes, Human, Y/genetics , Evolution, Molecular , Haplotypes , Human Migration , Humans , Male , Nigeria , Phylogeny , Polymorphism, Genetic
11.
Am J Hum Genet ; 104(5): 977-984, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31006515

ABSTRACT

During the medieval period, hundreds of thousands of Europeans migrated to the Near East to take part in the Crusades, and many of them settled in the newly established Christian states along the Eastern Mediterranean coast. Here, we present a genetic snapshot of these events and their aftermath by sequencing the whole genomes of 13 individuals who lived in what is today known as Lebanon between the 3rd and 13th centuries CE. These include nine individuals from the "Crusaders' pit" in Sidon, a mass burial in South Lebanon identified from the archaeology as the grave of Crusaders killed during a battle in the 13th century CE. We show that all of the Crusaders' pit individuals were males; some were Western Europeans from diverse origins, some were locals (genetically indistinguishable from present-day Lebanese), and two individuals were a mixture of European and Near Eastern ancestries, providing direct evidence that the Crusaders admixed with the local population. However, these mixtures appear to have had limited genetic consequences since signals of admixture with Europeans are not significant in any Lebanese group today-in particular, Lebanese Christians are today genetically similar to local people who lived during the Roman period which preceded the Crusades by more than four centuries.


Subject(s)
Ethnicity/genetics , Ethnicity/history , Gene Flow , Genetics, Population , Genome, Human , White People/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Female , History, Ancient , Humans , Lebanon/ethnology , Male
12.
Science ; 360(6392): 1024-1027, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29853687

ABSTRACT

Little is known regarding the first people to enter the Americas and their genetic legacy. Genomic analysis of the oldest human remains from the Americas showed a direct relationship between a Clovis-related ancestral population and all modern Central and South Americans as well as a deep split separating them from North Americans in Canada. We present 91 ancient human genomes from California and Southwestern Ontario and demonstrate the existence of two distinct ancestries in North America, which possibly split south of the ice sheets. A contribution from both of these ancestral populations is found in all modern Central and South Americans. The proportions of these two ancestries in ancient and modern populations are consistent with a coastal dispersal and multiple admixture events.


Subject(s)
Biological Evolution , Emigration and Immigration , Genome, Human , Population/genetics , California , Humans , Ontario
13.
Mol Biol Evol ; 35(8): 1916-1933, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29796643

ABSTRACT

We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India, or Tibet at over 500,000 SNPs, and analyzed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 and Egl-9 Family Hypoxia Inducible Factor 1 loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.


Subject(s)
Adaptation, Biological , Altitude , Genome, Human , Polymorphism, Single Nucleotide , Bhutan , Genetic Drift , Humans , Nepal , Phylogeography , Population Dynamics , Tibet
15.
Am J Hum Genet ; 101(2): 274-282, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28757201

ABSTRACT

The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes from ∼3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600-3,550 years ago, coinciding with recorded massive population movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry arrived in the Levant around 3,750-2,170 years ago during a period of successive conquests by distant populations.


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity/genetics , Genetics, Population/methods , Genome, Human/genetics , Genetic Variation/genetics , History, Ancient , Humans , Lebanon , Linkage Disequilibrium , Male , White People/genetics
16.
Nat Commun ; 8: 15927, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28643794

ABSTRACT

The genetic features of isolated populations can boost power in complex-trait association studies, and an in-depth understanding of how their genetic variation has been shaped by their demographic history can help leverage these advantageous characteristics. Here, we perform a comprehensive investigation using 3,059 newly generated low-depth whole-genome sequences from eight European isolates and two matched general populations, together with published data from the 1000 Genomes Project and UK10K. Sequencing data give deeper and richer insights into population demography and genetic characteristics than genotype-chip data, distinguishing related populations more effectively and allowing their functional variants to be studied more fully. We demonstrate relaxation of purifying selection in the isolates, leading to enrichment of rare and low-frequency functional variants, using novel statistics, DVxy and SVxy. We also develop an isolation-index (Isx) that predicts the overall level of such key genetic characteristics and can thus help guide population choice in future complex-trait association studies.


Subject(s)
Genome, Human , White People/genetics , Gene Frequency , Genetic Variation , Genetics, Population , Humans , Polymorphism, Single Nucleotide , Whole Genome Sequencing
17.
Sci Rep ; 7: 40338, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059138

ABSTRACT

Archaeological, palaeontological and geological evidence shows that post-glacial warming released human populations from their various climate-bound refugia. Yet specific connections between these refugia and the timing and routes of post-glacial migrations that ultimately established modern patterns of genetic variation remain elusive. Here, we use Y-chromosome markers combined with autosomal data to reconstruct population expansions from regional refugia in Southwest Asia. Populations from three regions in particular possess distinctive autosomal genetic signatures indicative of likely refugia: one, in the north, centered around the eastern coast of the Black Sea, the second, with a more Levantine focus, and the third in the southern Arabian Peninsula. Modern populations from these three regions carry the widest diversity and may indeed represent the most likely descendants of the populations responsible for the Neolithic cultures of Southwest Asia. We reveal the distinct and datable expansion routes of populations from these three refugia throughout Southwest Asia and into Europe and North Africa and discuss the possible correlations of these migrations to various cultural and climatic events evident in the archaeological record of the past 15,000 years.

18.
Am J Hum Genet ; 99(6): 1316-1324, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27889059

ABSTRACT

Understanding human genetic diversity in Africa is important for interpreting the evolution of all humans, yet vast regions in Africa, such as Chad, remain genetically poorly investigated. Here, we use genotype data from 480 samples from Chad, the Near East, and southern Europe, as well as whole-genome sequencing from 19 of them, to show that many populations today derive their genomes from ancient African-Eurasian admixtures. We found evidence of early Eurasian backflow to Africa in people speaking the unclassified isolate Laal language in southern Chad and estimate from linkage-disequilibrium decay that this occurred 4,750-7,200 years ago. It brought to Africa a Y chromosome lineage (R1b-V88) whose closest relatives are widespread in present-day Eurasia; we estimate from sequence data that the Chad R1b-V88 Y chromosomes coalesced 5,700-7,300 years ago. This migration could thus have originated among Near Eastern farmers during the African Humid Period. We also found that the previously documented Eurasian backflow into Africa, which occurred ∼3,000 years ago and was thought to be mostly limited to East Africa, had a more westward impact affecting populations in northern Chad, such as the Toubou, who have 20%-30% Eurasian ancestry today. We observed a decline in heterozygosity in admixed Africans and found that the Eurasian admixture can bias inferences on their coalescent history and confound genetic signals from adaptation and archaic introgression.


Subject(s)
Genetic Variation/genetics , Human Migration/history , Animals , Asia/ethnology , Chad , Ethiopia , Europe/ethnology , Gene Flow/genetics , Genetics, Population , Genome, Human/genetics , Heterozygote , History, Ancient , Humans , Linkage Disequilibrium , Middle East , Neanderthals/genetics , Polymorphism, Single Nucleotide/genetics , Population Density
20.
Genome Biol ; 17: 1, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26753840

ABSTRACT

Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.


Subject(s)
DNA/genetics , History, Ancient , Selection, Genetic/genetics , DNA/history , Human Migration/history , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...