Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38401169

ABSTRACT

Photosynthetic cryptophytes are ubiquitous protists that are major participants in the freshwater phytoplankton bloom at the onset of spring. Mortality due to change in environmental conditions and grazing have been recognized as key factors contributing to bloom collapse. In contrast, the role of viral outbreaks as factors terminating phytoplankton blooms remains unknown from freshwaters. Here, we isolated and characterized a cryptophyte virus contributing to the annual collapse of a natural cryptophyte spring bloom population. This viral isolate is also representative for a clade of abundant giant viruses (phylum Nucleocytoviricota) found in freshwaters all over the world.


Subject(s)
Giant Viruses , Viruses , Humans , Phytoplankton , Cryptophyta/genetics , Eukaryota
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365254

ABSTRACT

The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.


Subject(s)
Methylophilaceae , Genome, Bacterial , Genomic Islands , Phylogeny , Lakes
3.
ISME J ; 17(7): 1063-1073, 2023 07.
Article in English | MEDLINE | ID: mdl-37120702

ABSTRACT

Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.


Subject(s)
Bacteria , Rhodopsin , Rhodopsin/genetics , Rhodopsin/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria/genetics , Phototrophic Processes , Biological Transport , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism , Phylogeny
4.
ISME J ; 17(6): 943-946, 2023 06.
Article in English | MEDLINE | ID: mdl-36964199

ABSTRACT

Low-GC Actinobacteriota of the order 'Ca. Nanopelagicales' (also known as acI or hgcI clade) are abundant in freshwaters around the globe. Extensive predation pressure by phages has been assumed to be the reason for their high levels of microdiversity. So far, however, only a few metagenome-assembled phages have been proposed to infect them and no phages have been isolated. Taking advantage of recent advances in the cultivation of 'Ca. Nanopelagicales' we isolated a novel species of its genus 'Ca. Planktophila'. Using this isolate as bait, we cultivated the first two phages infecting this abundant bacterial order. Both genomes contained a whiB-like transcription factor and a RNA polymerase sigma-70 factor, which might aid in manipulating their host's metabolism. Both phages encoded a glycosyltransferase and one an anti-restriction protein, potential means to evade degradation of their DNA by nucleases present in the host genome. The two phage genomes shared only 6% of their genome with their closest relatives, with whom they form a previously uncultured family of actinophages within the Caudoviricetes. Read recruitment analyses against globally distributed metagenomes revealed the endemic distribution of this group of phages infecting 'Ca. Nanopelagicales'. The recruitment pattern against metagenomes from the isolation site and the modular distribution of shared genes between the two phages indicate high levels of horizontal gene transfer, likely mirroring the microdiversity of their host in the evolutionary arms race between host and phage.


Subject(s)
Bacteriophages , Bacteria/genetics , Gene Transfer, Horizontal , Metagenome , Fresh Water/microbiology , Genome, Viral , Phylogeny
5.
ISME J ; 17(1): 84-94, 2023 01.
Article in English | MEDLINE | ID: mdl-36207492

ABSTRACT

Morphology-based microscopic approaches are insufficient for a taxonomic classification of bacterivorous heterotrophic nanoflagellates (HNF) in aquatic environments since their cells do not display reliably distinguishable morphological features. This leads to a considerable lack of ecological insights into this large and taxonomically diverse functional guild. Here, we present a combination of fluorescence in situ hybridization followed by catalyzed reporter deposition (CARD-FISH) and environmental sequence analyses which revealed that morphologically indistinguishable, so far largely cryptic and uncultured aplastidic cryptophytes are ubiquitous and prominent protistan bacterivores in diverse freshwater ecosystems. Using a general probe for Cryptophyceae and its heterotrophic CRY1 lineage, we analyzed different water layers in 24 freshwater lakes spanning a broad range of trophic states, sizes and geographical locations. We show that bacterivorous aplastidic cryptophytes and the CRY1 lineage accounted for ca. 2/3 and » of total HNF, respectively, in both epilimnetic and hypolimnetic samples. These heterotrophic cryptophytes were generally smaller and more abundant than their chloroplast-bearing counterparts. They had high uptake rates of bacteria, hinting at their important roles in channeling carbon flow from prokaryotes to higher trophic levels. The worldwide ubiquity of Cryptophyceae and its CRY1 lineage was supported by 18S rRNA gene sequence analyses across a diverse set of 297 freshwater metagenomes. While cryptophytes have been considered to be mainly plastidic "algae", we show that it is the aplastidic counterparts that contribute considerably to bacterial mortality rates. Additionally, our results suggest an undiscovered diversity hidden amongst these abundant and morphologically diverse aplastidic cryptophytes.


Subject(s)
Cryptophyta , Ecosystem , In Situ Hybridization, Fluorescence , Cryptophyta/genetics , Cryptophyta/microbiology , Heterotrophic Processes , Bacteria/genetics , Lakes , Phylogeny
6.
Environ Microbiol ; 25(3): 606-641, 2023 03.
Article in English | MEDLINE | ID: mdl-36513610

ABSTRACT

Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.


Subject(s)
Ecology , Lakes , Genomics , Ecosystem , Bacteria/genetics , Phylogeny
7.
Microbiome ; 10(1): 84, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35659305

ABSTRACT

BACKGROUND: The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS: A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS: A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.


Subject(s)
Metagenome , Metagenomics , Animals , Bacteria , In Situ Hybridization, Fluorescence , Lakes/microbiology , Metagenome/genetics , Phylogeny
8.
Front Microbiol ; 13: 867694, 2022.
Article in English | MEDLINE | ID: mdl-35464964

ABSTRACT

Marine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. In this study, the temporal and spatial patterns of the bacterial and archaeal community were studied along a coast-to-offshore transect in the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of 2 consecutive years. Amplicon sequencing of 16S rRNA genes and transcripts was performed to determine presence and activity, respectively. The ultra-oligotrophic status of the Southeastern Mediterranean Sea was reflected in the microbial community composition dominated by oligotrophic bacterial groups such as SAR11, even at the most coastal station sampled, throughout the year. Seasons significantly affected the microbial communities, explaining more than half of the observed variability. However, the same few taxa dominated the community over the 2-year sampling period, varying only in their degree of dominance. While there was no overall effect of station location on the microbial community, the most coastal site (16 km offshore) differed significantly in community structure and activity from the three further offshore stations in early winter and summer. Our data on the microbial community compositions and their seasonality support previous notions that the EMS behaves like an oceanic gyre.

9.
Environ Microbiol ; 23(8): 4295-4308, 2021 08.
Article in English | MEDLINE | ID: mdl-34036706

ABSTRACT

In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent 'blooms' of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.


Subject(s)
Bacteria , Petroleum , Bacteria/genetics , Mediterranean Sea , Phytoplankton , RNA, Ribosomal, 16S/genetics
10.
Environ Microbiol ; 22(11): 4669-4688, 2020 11.
Article in English | MEDLINE | ID: mdl-32840024

ABSTRACT

Bacteria of the phylum Verrucomicrobia are ubiquitous in marine environments and can be found as free-living organisms or as symbionts of eukaryotic hosts. Little is known about host-associated Verrucomicrobia in the marine environment. Here we reconstructed two genomes of symbiotic Verrucomicrobia from bacterial metagenomes derived from the Atlanto-Mediterranean sponge Petrosia ficiformis and three genomes from strains that we isolated from offshore seawater of the Eastern Mediterranean Sea. Phylogenomic analysis of these five strains indicated that they are all members of Verrucomicrobia subdivision 4, order Opitutales. We compared these novel sponge-associated and seawater-isolated genomes to closely related Verrucomicrobia. Genomic analysis revealed that Planctomycetes-Verrucomicrobia microcompartment gene clusters are enriched in the genomes of symbiotic Opitutales including sponge symbionts but not in free-living ones. We hypothesize that in sponge symbionts these microcompartments are used for degradation of l-fucose and l-rhamnose, which are components of algal and bacterial cell walls and therefore may be found at high concentrations in the sponge tissue. Furthermore, we observed an enrichment of toxin-antitoxin modules in symbiotic Opitutales. We suggest that, in sponges, verrucomicrobial symbionts utilize these modules as a defence mechanism against antimicrobial activity deriving from the abundant microbial community co-inhabiting the host.


Subject(s)
Porifera/microbiology , Sugars/metabolism , Symbiosis , Toxin-Antitoxin Systems/genetics , Verrucomicrobia/physiology , Animals , Mediterranean Sea , Microbiota , Phylogeny , Seawater/microbiology , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/metabolism
11.
Environ Microbiol ; 22(11): 4658-4668, 2020 11.
Article in English | MEDLINE | ID: mdl-32830371

ABSTRACT

Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.


Subject(s)
Euglenozoa/classification , Euglenozoa/isolation & purification , Lakes/microbiology , Biodiversity , Ecosystem , Euglenozoa/cytology , Euglenozoa/genetics , In Situ Hybridization, Fluorescence , Japan , Metagenomics , Phylogeny , RNA, Ribosomal, 18S/genetics , Species Specificity
12.
Front Microbiol ; 11: 622824, 2020.
Article in English | MEDLINE | ID: mdl-33537022

ABSTRACT

Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.

13.
Nat Microbiol ; 2(12): 1696, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29057995

ABSTRACT

In the version of this Letter originally published, the authors incorrectly stated that primers 28F-519R were reported in ref. 54 to underestimate the abundance of SAR11 in the ocean. This statement has now been amended in all versions of the Letter.

14.
Nat Microbiol ; 2(12): 1608-1615, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28970475

ABSTRACT

Oceanic ecosystems are dominated by minute microorganisms that play a major role in food webs and biogeochemical cycles 1 . Many microorganisms thrive in the dilute environment due to their capacity to locate, attach to, and use patches of nutrients and organic matter 2,3 . We propose that some free-living planktonic bacteria have traded their ability to stick to nutrient-rich organic particles for a non-stick cell surface that helps them evade predation by mucous filter feeders. We used a combination of in situ sampling techniques and next-generation sequencing to study the biological filtration of microorganisms at the phylotype level. Our data indicate that some marine bacteria, most notably the highly abundant Pelagibacter ubique and most other members of the SAR 11 clade of the Alphaproteobacteria, can evade filtration by slipping through the mucous nets of both pelagic and benthic tunicates. While 0.3 µm polystyrene beads and other similarly-sized bacteria were efficiently filtered, SAR11 members were not captured. Reversed-phase chromatography revealed that most SAR11 bacteria have a much less hydrophobic cell surface than that of other planktonic bacteria. Our data call for a reconsideration of the role of surface properties in biological filtration and predator-prey interactions in aquatic systems.


Subject(s)
Alphaproteobacteria/metabolism , Bacterial Proteins/metabolism , Cell Surface Extensions , Hydrophobic and Hydrophilic Interactions , Seawater/microbiology , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Aquatic Organisms/metabolism , Bacteria , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Surface Extensions/genetics , Cell Surface Extensions/metabolism , Food Chain , France , Mediterranean Sea , Oceans and Seas , Polystyrenes/chemistry , RNA, Ribosomal, 16S/genetics , Surface Properties
15.
Environ Microbiol ; 19(3): 1077-1090, 2017 03.
Article in English | MEDLINE | ID: mdl-27871126

ABSTRACT

Sunlight can be directly harvested by photoheterotrophic bacteria to create a pH gradient across the membrane, which can then be utilized to produce ATP. Despite the potential importance of this trophic strategy, when and where such organisms are found in the seas and oceans is poorly described. Here, we describe the abundance and taxonomy of bacteria with different trophic strategies (heterotrophs, phototrophs and photoheterotrophs) in contrasting water masses of the ultra-oligotrophic eastern Mediterranean Sea. These water bodies, an anticyclonic eddy and a high-chlorophyll patch resulting from transport of nutrient-rich coastal waters into offshore oligotrophic waters, each supported different microbial populations in surface waters. Based on infrared microscopy and metagenomics, aerobic anoxygenic photoheterotrophic (AAP) bacteria represented up to 10.4% of the microbial community. In contrast, the proteorhodopsin (PR) gene was found in 78.6%-118.8% of the bacterial genome equivalents, the highest abundance reported to date. These results suggest that PR-mediated photoheterotrophy may be especially important in oligotrophic, potentially phosphate-limited conditions.


Subject(s)
Bacteria/genetics , Rhodopsins, Microbial/genetics , Bacteria, Aerobic/genetics , Genes, Bacterial , Mediterranean Sea , Metagenomics , Seawater/microbiology
16.
Front Microbiol ; 7: 416, 2016.
Article in English | MEDLINE | ID: mdl-27092109

ABSTRACT

Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the sponge at the time of collection. Our results highlight potential for QQ-bioactive lead molecules for anti-virulence therapy both from sponges and the bacteria isolated thereof, independently on the symbiotic nature of the latter.

17.
Appl Environ Microbiol ; 82(4): 1274-1285, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26655754

ABSTRACT

Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium.


Subject(s)
Alphaproteobacteria/enzymology , Ligases/isolation & purification , Microbiota , Symbiosis , Theonella/microbiology , Acyl-Butyrolactones/metabolism , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Indian Ocean , Ligases/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Alignment , Sequence Analysis, DNA
18.
mBio ; 6(3): e00391-15, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26037118

ABSTRACT

UNLABELLED: The "Candidatus Synechococcus spongiarum" group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a "Ca. Synechococcus spongiarum" group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, "Ca. Synechococcus spongiarum" includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of "Ca. Synechococcus spongiarum," each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of "Ca. Synechococcus spongiarum" members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the "Ca. Synechococcus spongiarum" group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack. IMPORTANCE: While the Synechococcus/Prochlorococcus-type cyanobacteria are widely distributed in the world's oceans, a subgroup has established its niche within marine sponge tissues. Recently, the first genome of sponge-associated cyanobacteria, "Candidatus Synechococcus spongiarum," was described. The sequencing of three representatives of different clades within this cyanobacterial group has enabled us to investigate intraspecies diversity, as well as to give a more comprehensive understanding of the common symbiotic features that adapt "Ca. Synechococcus spongiarum" to its life within the sponge host.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Porifera/microbiology , Symbiosis , Synechococcus/genetics , Synechococcus/physiology , Animals , Bacteriophages/physiology , Methionine/metabolism , O Antigens/immunology , Photosystem II Protein Complex/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Alignment , Sequence Analysis, DNA , Synechococcus/classification , Synechococcus/isolation & purification
19.
Front Microbiol ; 5: 529, 2014.
Article in English | MEDLINE | ID: mdl-25346728

ABSTRACT

The sponge Petrosia ficiformis is ubiquitous in the Mediterranean Sea and Eastern Atlantic Ocean, hosting a diverse assemblage of bacteria, including, in illuminated sites, cyanobacteria. Two closely related sponge color morphs have been described, one inside caves and at their entrance (white/pink), and one on the rocky cliffs (violet). The presence of the different morphs and their ubiquity in the Mediterranean (from North-West to South-East) provides an opportunity to examine which factors mostly affect the associated microbial communities in this species: (i) presence of phototrophic symbionts or (ii) biogeography. 16S rRNA gene tag pyrosequencing data of the microbial communities revealed that Chloroflexi, Gammaproteobacteria, and Acidobacteria dominated the bacterial communities of all sponges analyzed. Chlorophyll a content, TEM observations and DNA sequence data confirmed the presence of the cyanobacterium Synechococcus feldmannii in violet and pink morphs of P. ficiformis and their absence in white color morphs. Rather than cyanobacterial symbionts (i.e., color morphs) accounting for variability in microbial symbiont communities, a biogeographic trend was observed between P. ficiformis collected in Israel and Italy. Analyses of partial 18S rRNA and mitochondrial cytochrome c oxidase subunit I (COX1) gene sequences revealed consistent genetic divergence between the violet and pink-white morphotypes of P. ficiformis. Overall, data indicated that microbial symbiont communities were more similar in genetically distinct P. ficiformis from the same location, than genetically similar P. ficiformis from distant locations.

20.
FEMS Microbiol Ecol ; 87(2): 486-502, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24164535

ABSTRACT

In recent years new approaches have emerged for culturing marine environmental bacteria. They include the use of novel culture media, sometimes with very low-nutrient content, and a variety of growth conditions such as temperature, oxygen levels, and different atmospheric pressures. These approaches have largely been neglected when it came to the cultivation of sponge-associated bacteria. Here, we used physiological and environmental conditions to reflect the environment of sponge-associated bacteria along with genomic data of the prominent sponge symbiont Candidatus Poribacteria sp. WGA-4E, to cultivate bacteria from the Red Sea sponge Theonella swinhoei. Designing culturing conditions to fit the metabolic needs of major bacterial taxa present in the sponge, through a combined use of diverse culture media compositions with aerobic and microaerophilic states, and addition of antibiotics, yielded higher diversity of the cultured bacteria and led to the isolation of novel sponge-associated and sponge-specific bacteria. In this work, 59 OTUs of six phyla were isolated. Of these, 22 have no close type strains at the species level (< 97% similarity of 16S rRNA gene sequence), representing novel bacteria species, and some are probably new genera and even families.


Subject(s)
Bacteria/classification , Porifera/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/isolation & purification , Bacteriological Techniques , Base Sequence , Cell Culture Techniques , Culture Media , Genes, Bacterial , Genes, rRNA , Genomics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...