Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Nat Med ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844796

ABSTRACT

Recent research showed that precision medicine can identify new treatment strategies for patients with childhood cancers. However, it is unclear which patients will benefit most from precision-guided treatment (PGT). Here we report consecutive data from 384 patients with high-risk pediatric cancer (with an expected cure rate of less than 30%) who had at least 18 months of follow-up on the ZERO Childhood Cancer Precision Medicine Program PRecISion Medicine for Children with Cancer (PRISM) trial. A total of 256 (67%) patients received PGT recommendations and 110 (29%) received a recommended treatment. PGT resulted in a 36% objective response rate and improved 2-year progression-free survival compared with standard of care (26% versus 12%; P = 0.049) or targeted agents not guided by molecular findings (26% versus 5.2%; P = 0.003). PGT based on tier 1 evidence, PGT targeting fusions or commenced before disease progression had the greatest clinical benefit. Our data show that PGT informed by comprehensive molecular profiling significantly improves outcomes for children with high-risk cancers. ClinicalTrials.gov registration: NCT03336931.

2.
Blood ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579286

ABSTRACT

The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely due to the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor GADD45A is implicated in poor clinical outcomes but its role in LSCs and AML pathogenesis is unknown. Here we define GADD45A as a key downstream target of LGR4 oncogenic signaling and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo and reduces levels of reactive oxygen species (ROS), accompanied by decreased response to ROS-associated genotoxic agents (e.g., ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype upon serial transplantation in mice. Our single-cell CITE-seq analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in AML patients. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.

3.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360978

ABSTRACT

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/metabolism , Tyrosine/metabolism , Mitosis , Centrosome/metabolism , Phosphoric Monoester Hydrolases/metabolism , HeLa Cells , Nuclear Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Trans-Activators/metabolism
4.
J Mol Med (Berl) ; 102(4): 507-519, 2024 04.
Article in English | MEDLINE | ID: mdl-38349407

ABSTRACT

Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.


Subject(s)
Disulfiram , Leukemia, Myeloid, Acute , Humans , Disulfiram/pharmacology , Disulfiram/therapeutic use , Reactive Oxygen Species/metabolism , Auranofin/pharmacology , Auranofin/therapeutic use , Cell Line, Tumor , Leukemia, Myeloid, Acute/metabolism
5.
Br J Cancer ; 130(5): 788-797, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200233

ABSTRACT

BACKGROUND: MYC genes regulate ornithine decarboxylase (Odc) to increase intratumoral polyamines. We conducted a Phase I trial [NCT02030964] to determine the maximum tolerated dose (MTD) of DFMO, an Odc inhibitor, with celecoxib, cyclophosphamide and topotecan. METHODS: Patients 2-30 years of age with relapsed/refractory high-risk neuroblastoma received oral DFMO at doses up to 9000 mg/m2/day, with celecoxib (500 mg/m2 daily), cyclophosphamide (250 mg/m2/day) and topotecan (0.75 mg/m2/day) IV for 5 days, for up to one year with G-CSF support. RESULTS: Twenty-four patients (median age, 6.8 years) received 136 courses. Slow platelet recovery with 21-day courses (dose-levels 1 and 2) led to subsequent dose-levels using 28-day courses (dose-levels 2a-4a). There were three course-1 dose-limiting toxicities (DLTs; hematologic; anorexia; transaminases), and 23 serious adverse events (78% fever-related). Five patients (21%) completed 1-year of therapy. Nine stopped for PD, 2 for DLT, 8 by choice. Best overall response included two PR and four MR. Median time-to-progression was 19.8 months, and 3 patients remained progression-free at >4 years without receiving additional therapy. The MTD of DFMO with this regimen was 6750 mg/m2/day. CONCLUSION: High-dose DFMO is tolerable when added to chemotherapy in heavily pre-treated patients. A randomized Phase 2 trial of DFMO added to chemoimmunotherapy is ongoing [NCT03794349].


Subject(s)
Neoplasm Recurrence, Local , Neuroblastoma , Child , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Celecoxib/therapeutic use , Cyclophosphamide/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Topotecan/therapeutic use , Child, Preschool , Adolescent , Young Adult , Adult
6.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958555

ABSTRACT

MYCN amplification occurs in approximately 20-30% of neuroblastoma patients and correlates with poor prognosis. The TH-MYCN transgenic mouse model mimics the development of human high-risk neuroblastoma and provides strong evidence for the oncogenic function of MYCN. In this study, we identified mitotic dysregulation as a hallmark of tumor initiation in the pre-cancerous ganglia from TH-MYCN mice that persists through tumor progression. Single-cell quantitative-PCR of coeliac ganglia from 10-day-old TH-MYCN mice revealed overexpression of mitotic genes in a subpopulation of premalignant neuroblasts at a level similar to single cells derived from established tumors. Prophylactic treatment using antimitotic agents barasertib and vincristine significantly delayed the onset of tumor formation, reduced pre-malignant neuroblast hyperplasia, and prolonged survival in TH-MYCN mice. Analysis of human neuroblastoma tumor cohorts showed a strong correlation between dysregulated mitosis and features of MYCN amplification, such as MYC(N) transcriptional activity, poor overall survival, and other clinical predictors of aggressive disease. To explore the therapeutic potential of targeting mitotic dysregulation, we showed that genetic and chemical inhibition of mitosis led to selective cell death in neuroblastoma cell lines with MYCN over-expression. Moreover, combination therapy with antimitotic compounds and BCL2 inhibitors exploited mitotic stress induced by antimitotics and was synergistically toxic to neuroblastoma cell lines. These results collectively suggest that mitotic dysregulation is a key component of tumorigenesis in early neuroblasts, which can be inhibited by the combination of antimitotic compounds and pro-apoptotic compounds in MYCN-driven neuroblastoma.


Subject(s)
Antimitotic Agents , Neuroblastoma , Humans , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Cell Line, Tumor , Mice, Transgenic , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic
7.
Br J Cancer ; 129(10): 1634-1644, 2023 11.
Article in English | MEDLINE | ID: mdl-37726477

ABSTRACT

BACKGROUND: Paediatric precision oncology aims to match therapeutic agents to driver gene targets. We investigated whether parents and patients regret participation in precision medicine trials, particularly when their hopes are unfulfilled. METHODS: Parents and adolescent patients completed questionnaires at trial enrolment (T0) and after receiving results (T1). Parents opted-in to an interview at T1. Bereaved parents completed a questionnaire 6-months post-bereavement (T1B). We analysed quantitative data with R and qualitative data thematically with NVivo, before integrating all data for interpretation. RESULTS: 182 parents and 23 patients completed T0; 108/182 parents and 8/23 patients completed T1; 27/98 bereaved parents completed T1B; and 45/108 parents were interviewed. At enrolment, participants held concurrent hopes that precision medicine would benefit future children and their child. Participants expressed concern regarding wait-times for receipt of results. Most participants found the trial beneficial and not burdensome, including bereaved parents. Participants reported high trial satisfaction (median scores: parents: 93/100; patients: 80/100). Participants expressed few regrets (parent median scores: parents: 10/100; bereaved parents: 15/100; patient regret: 2/8 expressed minimal regret). CONCLUSIONS: Even when trial outcomes did not match their hopes, parents and patients rarely regretted participating in a childhood cancer precision medicine trial. These data are critical for integrating participants' views into future precision medicine delivery.


Subject(s)
Bereavement , Neoplasms , Adolescent , Child , Humans , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Patient Satisfaction , Parents
8.
J Pers Med ; 13(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37511646

ABSTRACT

Precision medicine programs aim to utilize novel technologies to identify personalized treatments for children with cancer. Delivering these programs requires interdisciplinary efforts, yet the many groups involved are understudied. This study explored the experiences of a broad range of professionals delivering Australia's first precision medicine trial for children with poor-prognosis cancer: the PRecISion Medicine for Children with Cancer (PRISM) national clinical trial of the Zero Childhood Cancer Program. We conducted semi-structured interviews with 85 PRISM professionals from eight professional groups, including oncologists, surgeons, clinical research associates, scientists, genetic professionals, pathologists, animal care technicians, and nurses. We analyzed interviews thematically. Professionals shared that precision medicine can add complexity to their role and result in less certain outcomes for families. Although many participants described experiencing a greater emotional impact from their work, most expressed very positive views about the impact of precision medicine on their profession and its future potential. Most reported navigating precision medicine without formal training. Each group described unique challenges involved in adapting to precision medicine in their profession. Addressing training gaps and meeting the specific needs of many professional groups involved in precision medicine will be essential to ensure the successful implementation of standard care.

9.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37523146

ABSTRACT

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Child , Drug Evaluation, Preclinical , Early Detection of Cancer , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , High-Throughput Screening Assays/methods
10.
Sci Transl Med ; 15(696): eabm1262, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37196067

ABSTRACT

High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Leukemia , Humans , Antibodies, Bispecific/therapeutic use , Tissue Distribution , Leukocytes, Mononuclear , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/therapeutic use , Polyethylene Glycols , Liposomes , Leukemia/drug therapy
11.
Genome Med ; 15(1): 20, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013636

ABSTRACT

BACKGROUND: Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We speculated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used biomarkers such as tumour mutation burden (TMB), neoantigen load and PD-L1 expression, is an essential prerequisite for improved immunotherapies in childhood solid cancers. METHODS: We combined immunohistochemistry (IHC) with RNA sequencing and whole-genome sequencing across a diverse spectrum of high-risk paediatric cancers to develop an alternative, expression-based signature associated with CD8+ T-cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes and T-cell receptor sequencing diversity, assessed the relationship between CD8+ and CD4+ abundance by IHC and deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB. RESULTS: A novel 15-gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this signature, we estimate up to 31% of high-risk cancers harbour infiltrating T-cells. In addition, we showed that PD-L1 protein expression is poorly correlated with PD-L1 RNA expression and TMB and neoantigen load are not predictive of T-cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measurements of T-cells. CONCLUSIONS: Our data provides new insights into the variable immune-suppressive mechanisms dampening responses in paediatric solid cancers. Effective immune-based interventions in high-risk paediatric cancer will require individualised analysis of the TIME.


Subject(s)
B7-H1 Antigen , Neoplasms , Adult , Humans , Child , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Neoplasms/genetics , CD8-Positive T-Lymphocytes/metabolism , Biomarkers, Tumor/genetics , Tumor Microenvironment/genetics , Mutation
12.
Sci Adv ; 9(9): eabp8314, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36867694

ABSTRACT

Gene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network. Furthermore, we reveal that the memory of this initially random state is retained following chemotherapy treatment across a series of in vitro, in vivo, and patient models. Using matched PDX models established at diagnosis and relapse from individual patients, we show that HDAC inhibitor priming cannot erase the memory of this resistant state within relapsed neuroblastomas but improves response in the first-line setting by restoring drug-induced JNK activity within the chemoresistant population of treatment-naïve tumors.


Subject(s)
Drug Resistance, Neoplasm , Neuroblastoma , Humans , Apoptosis , Signal Transduction , Histone Deacetylase Inhibitors
13.
Sci Rep ; 13(1): 3775, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882456

ABSTRACT

Diffuse midline gliomas (DMG) harbouring H3K27M mutation are paediatric tumours with a dismal outcome. Recently, a new subtype of midline gliomas has been described with similar features to DMG, including loss of H3K27 trimethylation, but lacking the canonical H3K27M mutation (H3-WT). Here, we report a cohort of five H3-WT tumours profiled by whole-genome sequencing, RNA sequencing and DNA methylation profiling and combine their analysis with previously published cases. We show that these tumours have recurrent and mutually exclusive mutations in either ACVR1 or EGFR and are characterised by high expression of EZHIP associated to its promoter hypomethylation. Affected patients share a similar poor prognosis as patients with H3K27M DMG. Global molecular analysis of H3-WT and H3K27M DMG reveal distinct transcriptome and methylome profiles including differential methylation of homeobox genes involved in development and cellular differentiation. Patients have distinct clinical features, with a trend demonstrating ACVR1 mutations occurring in H3-WT tumours at an older age. This in-depth exploration of H3-WT tumours further characterises this novel DMG, H3K27-altered sub-group, characterised by a specific immunohistochemistry profile with H3K27me3 loss, wild-type H3K27M and positive EZHIP. It also gives new insights into the possible mechanism and pathway regulation in these tumours, potentially opening new therapeutic avenues for these tumours which have no known effective treatment. This study has been retrospectively registered on clinicaltrial.gov on 8 November 2017 under the registration number NCT03336931 ( https://clinicaltrials.gov/ct2/show/NCT03336931 ).


Subject(s)
Genes, Homeobox , Glioma , Child , Humans , Histones/genetics , Methylation , Glioma/genetics , Mutation , ErbB Receptors/genetics , Activin Receptors, Type I
14.
Int J Cancer ; 152(7): 1399-1413, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36346110

ABSTRACT

The mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells. Among mitochondria-associated gene targets, we found that high expression of the mitochondrial adenine nucleotide translocase 2 (SLC25A5/ANT2), was a strong predictor of poor neuroblastoma patient prognosis and contributed to a more malignant phenotype in pre-clinical models. Inhibiting this transporter with PENAO reduced cell viability in a panel of neuroblastoma cell lines in a TP53-status-dependant manner. We identified the histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), as the most effective drug in clinical use against mutant TP53 neuroblastoma cells. SAHA and PENAO synergistically reduced cell viability, and induced apoptosis, in neuroblastoma cells independent of TP53-status. The SAHA and PENAO drug combination significantly delayed tumour progression in pre-clinical neuroblastoma mouse models, suggesting that these clinically advanced inhibitors may be effective in treating the disease.


Subject(s)
Adenine Nucleotide Translocator 2 , Antineoplastic Agents , Histone Deacetylase Inhibitors , Hydroxamic Acids , Neuroblastoma , Animals , Mice , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Hydroxamic Acids/therapeutic use , Mitochondria/metabolism , Neuroblastoma/drug therapy , Vorinostat/pharmacology , Adenine Nucleotide Translocator 2/antagonists & inhibitors
15.
Proc Natl Acad Sci U S A ; 119(49): e2213146119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36449545

ABSTRACT

Activation of endogenous retrotransposons frequently occurs in cancer cells and contributes to tumor genomic instability. To test whether inhibition of retrotranspositions has an anticancer effect, we used treatment with the nucleoside reverse transcriptase inhibitor (NRTI) stavudine (STV) in mouse cancer models, MMTV-HER2/Neu and Th-MYCN, that spontaneously develop breast cancer and neuroblastoma, respectively. In both cases, STV in drinking water did not affect tumor incidence nor demonstrate direct antitumor effects. However, STV dramatically extended progression-free survival in both models following an initial complete response to chemotherapy. To approach the mechanism underlying this phenomenon, we analyzed the effect of NRTI on the selection of treatment-resistant variants in tumor cells in culture. Cultivation of mouse breast carcinoma 4T1 in the presence of STV dramatically reduced the frequency of cells capable of surviving treatment with anticancer drugs. Global transcriptome analysis demonstrated that the acquisition of drug resistance by 4T1 cells was accompanied by an increase in the constitutive activity of interferon type I and NF-κB pathways and an elevated expression of LINE-1 elements, which are known to induce inflammatory responses via their products of reverse transcription. Treatment with NRTI reduced NF-κB activity and reverted drug resistance. Furthermore, the inducible expression of LINE-1 stimulated inflammatory response and increased the frequency of drug-resistant variants in a tumor cell population. These results indicate a mechanism by which retrotransposon desilencing can stimulate tumor cell survival during treatment and suggest reverse transcriptase inhibition as a potential therapeutic approach for targeting the development of drug-resistant cancers.


Subject(s)
Retroelements , Reverse Transcriptase Inhibitors , Animals , Mice , Reverse Transcriptase Inhibitors/pharmacology , Retroelements/genetics , NF-kappa B , Drug Resistance, Neoplasm/genetics , Long Interspersed Nucleotide Elements
16.
Front Oncol ; 12: 863329, 2022.
Article in English | MEDLINE | ID: mdl-35677155

ABSTRACT

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

17.
Cancers (Basel) ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35454786

ABSTRACT

BACKGROUND: Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy with over 80% of cases already disseminated at diagnosis and facing a dismal five-year survival rate of 35%. EOC cells often spread to the greater omentum where they take-up cholesterol. Excessive amounts of cholesterol can be cytocidal, suggesting that cholesterol efflux through transporters may be important to maintain homeostasis, and this may explain the observation that high expression of the ATP-binding cassette A1 (ABCA1) cholesterol transporter has been associated with poor outcome in EOC patients. METHODS: ABCA1 expression was silenced in EOC cells to investigate the effect of inhibiting cholesterol efflux on EOC biology through growth and migration assays, three-dimensional spheroid culture and cholesterol quantification. RESULTS: ABCA1 suppression significantly reduced the growth, motility and colony formation of EOC cell lines as well as the size of EOC spheroids, whilst stimulating expression of ABCA1 reversed these effects. In serous EOC cells, ABCA1 suppression induced accumulation of cholesterol. Lowering cholesterol levels using methyl-B-cyclodextrin rescued the effect of ABCA1 suppression, restoring EOC growth. Furthermore, we identified FDA-approved agents that induced cholesterol accumulation and elicited cytocidal effects in EOC cells. CONCLUSIONS: Our data demonstrate the importance of ABCA1 in maintaining cholesterol balance and malignant properties in EOC cells, highlighting its potential as a therapeutic target for this disease.

18.
Biomark Res ; 10(1): 14, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365224

ABSTRACT

Adoptive cell therapy using patient-derived chimeric receptor antigen (CAR) T cells redirected against tumor cells has shown remarkable success in treating hematologic cancers. However, wider accessibility of cellular therapies for all patients is needed. Manufacture of patient-derived CAR T cells is limited by prolonged lymphopenia in heavily pre-treated patients and risk of contamination with tumor cells when isolating T cells from patient blood rich in malignant blasts. Donor T cells provide a good source of immune cells for adoptive immunotherapy and can be used to generate universal off-the-shelf CAR T cells that are readily available for administration into patients as required. Genome editing tools such as TALENs and CRISPR-Cas9 and non-gene editing methods such as short hairpin RNA and blockade of protein expression are currently used to enhance CAR T cell safety and efficacy by abrogating non-specific toxicity in the form of graft versus host disease (GVHD) and preventing CAR T cell rejection by the host.

19.
FEBS J ; 289(13): 3854-3875, 2022 07.
Article in English | MEDLINE | ID: mdl-35080351

ABSTRACT

MRP1 (ABCC1) is a membrane transporter that confers multidrug resistance in cancer cells by exporting chemotherapeutic agents, often in a reduced glutathione (GSH)-dependent manner. This transport activity can be altered by compounds (modulators) that block drug transport while simultaneously stimulating GSH efflux by MRP1. In MRP1-expressing cells, modulator-stimulated GSH efflux can be sufficient to deplete GSH and increase sensitivity to chemotherapy, enhancing cancer cell death. Further development of clinically useful MRP1 modulators requires a better mechanistic understanding of modulator binding and its relationship to GSH binding and transport. Here, we explore the mechanism of two MRP1 small molecule modulators, 5681014 and 7914321, in relation to a bipartite substrate-binding cavity of MRP1. Binding of these modulators to MRP1 was dependent on the presence of GSH but not its reducing capacity. Accordingly, the modulators poorly inhibited organic anion transport by K332L-mutant MRP1, where GSH binding and transport is limited. However, the inhibitory activity of the modulators was also diminished by mutations that limit E2 17ßG but spare GSH-conjugate binding and transport (W553A, M1093A, W1246A), suggesting overlap between the E2 17ßG and modulator binding sites. Immunoblots of limited trypsin digests of MRP1 suggest that binding of GSH, but not the modulators, induces a conformation change in MRP1. Together, these findings support the model, in which GSH binding induces a conformation change that facilitates binding of MRP1 modulators, possibly in a proposed hydrophobic binding pocket of MRP1. This study may facilitate the structure-guided design of more potent and selective MRP1 modulators.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Multidrug Resistance-Associated Proteins , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Binding Sites , Biological Transport , Glutathione/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism
20.
Br J Cancer ; 126(3): 482-491, 2022 02.
Article in English | MEDLINE | ID: mdl-34471258

ABSTRACT

BACKGROUND: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA. METHODS: We examined the feasibility of using whole-genome sequencing (WGS) data to design tumour-specific polymerase chain reaction (PCR)-based MRD tests (WGS-MRD) in 18 children with high-risk relapsed cancer, including ALL, high-risk neuroblastoma (HR-NB) and Ewing sarcoma (EWS) (n = 6 each). RESULTS: Sensitive WGS-MRD assays were generated for each patient and allowed quantitation of 1 tumour cell per 10-4 (0.01%)-10-5 (0.001%) mononuclear cells. In ALL, WGS-MRD and Ig/TCR-MRD were highly concordant. WGS-MRD assays also showed good concordance between quantitative PCR and droplet digital PCR formats. In serial clinical samples, WGS-MRD correlated with disease course. In solid tumours, WGS-MRD assays were more sensitive than RNA-MRD assays. CONCLUSIONS: WGS facilitated the development of patient-specific MRD tests in ALL, HR-NB and EWS with potential clinical utility in monitoring treatment response. WGS data could be used to design patient-specific MRD assays in a broad range of tumours.


Subject(s)
Biomarkers, Tumor/genetics , Gene Rearrangement , Neoplasm, Residual/pathology , Neuroblastoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Sarcoma, Ewing/pathology , Whole Genome Sequencing/methods , Adolescent , Bone Neoplasms/blood , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Child , Child, Preschool , Female , Humans , Infant , Male , N-Myc Proto-Oncogene Protein/genetics , Neoplasm, Residual/genetics , Neuroblastoma/blood , Neuroblastoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Protein c-fli-1/genetics , Receptors, Antigen, T-Cell/genetics , Sarcoma, Ewing/blood , Sarcoma, Ewing/genetics , Transcriptional Regulator ERG/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...