Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 312(1): 131-46, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17964563

ABSTRACT

The phenomenon of whole body regeneration (WBR) from minute soma fragments is a rare event in chordates, confined to the subfamily of botryllid ascidians and is poorly understood on the cellular and molecular levels. We assembled a list of 1326 ESTs from subtracted mRNA, at early stages of Botrylloides leachi WBR, and classified them into functional categories. Sixty-seven (15%) ESTs with roles in innate immunity signaling were classified into a broad functional group, a result supported by domain search and RT-PCR reactions. Gene ontology analysis for human homologous to the immune gene category, identified 22 significant entries, of which "peptidase activity" and "protease inhibitor activity", stood out as functioning during WBR. Analyzing expressions of serine protease Bl-TrSP, a representative candidate gene from the "peptidase activity" subgroup, revealed low transcript levels in naïve vasculature with upregulated expression during WBR. This was confirmed by in situ hybridization that further elucidated staining restricted to a circulating population of macrophage cells. Furthermore, Bl-TrSP was localized in regeneration niches within vasculature, in regenerating buds, and in buds, during blastogenesis. Functional inhibition of serine protease activity disrupts early remodeling processes of the vasculature microenvironment and hinders WBR. Comparison of genome-wide transcription of WBR with five other developmental processes in ascidians (including metamorphosis, budding and blastogenesis), revealed a broad conservation of immune signaling expressions, suggesting a ubiquitous route of harnessing immune-related genes within a broader range of tunicate developmental context. This, in turn, may have enabled the high diversity of life history traits represented by urochordate ascidians.


Subject(s)
Immunity, Innate/immunology , Regeneration , Signal Transduction , Urochordata/immunology , Urochordata/physiology , Animals , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Library , Lymphocyte Activation , Sequence Homology, Nucleic Acid , Serine Endopeptidases/metabolism , Time Factors , Urochordata/enzymology , Urochordata/genetics
2.
Nucleic Acids Res ; 35(Web Server issue): W526-30, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17537808

ABSTRACT

Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding.


Subject(s)
Computational Biology/methods , Models, Molecular , Proteins/chemistry , Software , Static Electricity , Algorithms , Databases, Protein , Hydrogen-Ion Concentration , Internet , Molecular Conformation , Plant Proteins/chemistry , Programming Languages , Surface Properties , User-Computer Interface , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...