Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(22): 7548-7556, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37207369

ABSTRACT

The evaporation of water from bare soil is often accompanied by the formation of a layer of crystallized salt, a process that must be understood in order to address the issue of soil salinization. Here, we use nuclear magnetic relaxation dispersion measurements to better understand the dynamic properties of water within two types of salt crusts: sodium chloride (NaCl) and sodium sulfate (Na2SO4). Our experimental results display a stronger dispersion of the relaxation time T1 with frequency for the case of sodium sulfate as compared to sodium chloride salt crusts. To gain insight into these results, we perform molecular dynamics simulations of salt solutions confined within slit nanopores made of either NaCl or Na2SO4. We find a strong dependence of the value of the relaxation time T1 on pore size and salt concentration. Our simulations reveal the complex interplay between the adsorption of ions at the solid surface, the structure of water near the interface, and the dispersion of T1 at low frequency, which we attribute to adsorption-desorption events.

2.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500563

ABSTRACT

Magnetic resonance imaging is a valuable tool for three-dimensional mapping of soil water processes due to its sensitivity to the substance of interest: water. Since conventional gradient- or spin-echo based pulse sequences do not detect rapidly relaxing fractions of water in natural porous media with transverse relaxation times in the millisecond range, pulse sequences with ultrafast detection open a way out. In this work, we compare a spin-echo multislice pulse sequence with ultrashort (UTE) and zero-TE (ZTE) sequences for their suitability to map water content and its changes in 3D in natural soil materials. Longitudinal and transverse relaxation times were found in the ranges around 80 ms and 1 to 50 ms, respectively, so that the spin echo sequence misses larger fractions of water. In contrast, ZTE and UTE could detect all water, if the excitation and detection bandwidths were set sufficiently broad. More precisely, with ZTE we could map water contents down to 0.1 cm3/cm3. Finally, we employed ZTE to monitor the development of film flow in a natural soil core with high temporal resolution. This opens the route for further quantitative imaging of soil water processes.

3.
J Am Chem Soc ; 127(25): 8977-84, 2005 Jun 29.
Article in English | MEDLINE | ID: mdl-15969574

ABSTRACT

Recently, it has been shown that the red fluorescent protein DsRed undergoes photoconversion on intense irradiation, but the mechanism of the conversion has not yet been elucidated. Upon irradiation with a nanosecond-pulsed laser at 532 nm, the chromophore of DsRed absorbing at 559 nm and emitting at 583 nm (R form) converts into a super red (SR) form absorbing at 574 nm and emitting at 595 nm. This conversion leads to a significant change in the fluorescence quantum yield from 0.7 to 0.01. Here we demonstrate that the photoconversion is the result of structural changes of the chromophore and one amino acid. Absorption, fluorescence, and vibrational spectroscopy as well as mass spectrometry suggest that a cis-to-trans isomerization of the chromophore and decarboxylation of a glutamate (E215) take place upon irradiation to form SR. At the same time, another photoproduct (B) with an absorption maximum at 386 nm appears upon irradiation. This species is assigned as a protonated form of the DsRed chromophore. It might be a mixture of several protonated DsRed forms as there is at least two ways of formation. Furthermore, the photoconversion of DsRed is proven to occur through a consecutive two-photon absorption process. Our results demonstrate the importance of the chromophore conformation in the ground state on the brightness of the protein as well as the importance of the photon flux to control/avoid the photoconversion process.


Subject(s)
Luminescent Proteins/chemistry , Luminescent Proteins/radiation effects , Photolysis , Decarboxylation , Isomerism , Lasers , Molecular Structure , Time Factors
4.
J Am Chem Soc ; 126(49): 16199-206, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15584756

ABSTRACT

A novel concept is introduced for the oriented incorporation of membrane proteins into solid supported lipid bilayers. Recombinant cytochrome c oxidase solubilized in detergent was immobilized on a chemically modified gold surface via the affinity of its histidine-tag to a nickel-chelating nitrilo-triacetic acid (NTA) surface. The oriented protein monolayer was reconstituted into the lipid environment by detergent substitution. The individual steps of the surface modification, including (1) chemical modification of the gold support, (2) adsorption of the protein, and (3) reconstitution of the lipid bilayer, were followed in situ by means of surface-enhanced infrared absorption spectroscopy (SEIRAS) and accompanied by normal-mode analysis. The high surface sensitivity of SEIRAS allows for the identification of each chemical reaction process within the monolayer at the molecular level. Finally, full functionality of the surface-tethered cytochrome c oxidase was demonstrated by cyclic voltammetry after binding of the natural electron donor cytochrome c.


Subject(s)
Electron Transport Complex IV/chemistry , Enzymes, Immobilized/chemistry , Gold/chemistry , Histidine/chemistry , Electrochemistry , Lipid Bilayers/chemistry , Models, Molecular , Nitrilotriacetic Acid/chemistry , Recombinant Proteins/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...