Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Type of study
Language
Publication year range
1.
Tree Physiol ; 43(3): 404-417, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36349691

ABSTRACT

The first symptom of aluminum (Al) toxicity is the inhibition of root growth, which has been associated with low leaf hydration, with negative consequences for leaf gas exchange including stomatal conductance (gs) observed in many plant species. Here we asked whether low leaf hydration occurs before or after the inhibition of root growth of Citrus × limonia Osbeck ('Mandarin' lime) cultivated for 60 days in nutrient solution with 0 and 1480 µM Al. The length, diameter, surface area and biomass of roots of plants exposed to Al were lower than control plants only at 30 days after treatments (DAT). Until the end of the study, estimated gs (measured by sap flow techniques) was lower than in control plants from 3 DAT, total plant transpiration (Eplant) and root hydraulic conductivity (Lpr) at 7 DAT, and midday leaf water potential (Ψmd) and relative leaf water content at 15 DAT. Abscisic acid (ABA) in leaves was twofold higher in Al-exposed plants 1 DAT, and in roots a twofold higher peak was observed at 15 DAT. As ABA in leaves approached values of control plants after 15 DAT, we propose that low gs of plants exposed to Al is primarily caused by ABA, and the maintenance of low gs could be ascribed to the low Lpr from 7 DAT until the end of the study. Therefore, the low leaf hydration in 'Mandarin' lime exposed to Al does not seem to be caused by root growth inhibition or by a simple consequence of low water uptake due to a stunted root system.


Subject(s)
Abscisic Acid , Citrus , Aluminum , Plant Roots/physiology , Plant Leaves/physiology , Water/physiology , Plant Transpiration/physiology
2.
J Plant Res ; 133(5): 625-637, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32562161

ABSTRACT

Styrax camporum Pohl. (Styracaceae) is a woody species that grows on acidic soils from the Brazilian savanna with high aluminum (Al) saturation (m% > 50%), where it accumulates ~ 1500 mg Al per kg dry leaves. Using nutrient solution, a previous study showed that 1480 µM Al causes toxicity symptoms, which raises the question whether less than 1480 µM Al could cause beneficial effects on this species. Here, we checked possible altered gas exchange rates, damage to organelles in root tips and the association between Al exposure and mitochondria occurrence in cells of root tips, once organic acids from Krebs cycle exuded by the roots of this species when exposed to Al have been recently evidenced. Five-month-old plants were grown in nutrient solution with 0, 740 and 1480 µM Al for 90 days. Plants exposed to 1480 µM Al showed less developed root system, reduced plant height and low gas exchange rates in relation to those exposed to 0 and 740 µM Al, confirming that 1480 µM Al is toxic to S. camporum. However, plants exposed to 0 and 740 µM Al had similar number of leaves, plant height, root biomass, root length, total plant biomass and gas exchange rates, indicating that no beneficial effects from 740 µM Al could be noted on this species. In plants exposed to 0 and 740 µM Al, mitochondria were noted at the root tip, while at 1480 µM Al these organelles were not evident due to the conspicuous vacuolation of root cells. S. camporum shows limited tolerance to Al in nutrient solution. In addition, this species is not dependent on Al to grow and develop because the plants grew well under 0 and 740 µM Al.


Subject(s)
Aluminum , Styrax , Aluminum/toxicity , Brazil , Plant Roots , Styrax/drug effects , Styrax/growth & development , Wood
3.
Funct Plant Biol ; 47(2): 112-121, 2020 02.
Article in English | MEDLINE | ID: mdl-31864427

ABSTRACT

In acidic soils, aluminium (Al) occurs as Al3+, which is phytotoxic. One of the most conspicuous symptoms of Al toxicity is the root growth inhibition, which can lead to low water uptake and consequent reduction in leaf hydration and gas exchange. However, fibrous xylem vessels have been observed in roots of 'Rangpur' lime plants (Citrus limonia L.) when exposed to Al, which could affect the functioning of aquaporins, ultimately reducing their expression. We confirmed a decrease of CO2 assimilation (A), stomatal conductance (gs), transpiration (E) and relative leaf water content (RWC) in 3-month-old C. limonia plants exposed to 1480 µM Al in nutrient solution for 90 days. The estimated hydraulic conductivity from soil to the leaf (KL) and leaf water potential (Ψw) also showed low values, although not consistently reduced over time of Al exposure. The relative expression of aquaporin genes belonging to PIP family (PIP1-1, PIP1-2 and PIP2) showed downregulation for ClPIP1-1 and ClPIP2 and upregulation for ClPIP1-2 in plants exposed to Al. Furthermore, ClPIP1-1 was positively correlated with A and gs in plants exposed to Al. Therefore, downregulation of ClPIP1-1 and ClPIP2 in roots of 'Rangpur' lime plants could be associated with the low leaf hydration of this species when exposed to Al.


Subject(s)
Aquaporins , Citrus , Aluminum , Calcium Compounds , Oxides , Plant Roots
4.
Am J Bot ; 102(9): 1453-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26391709

ABSTRACT

PREMISE OF THE STUDY: Most bird-dispersed fruits are green when unripe and become colored and conspicuous when ripe, signaling that fruits are ready to be consumed and dispersed. The color pattern for fruits of Miconia albicans (Melastomataceae), however, is the opposite, with reddish unripe and green ripe fruits. We (1) verified the maintenance over time of its bicolored display, (2) tested the communicative function of unripe fruits, (3) tested the photoprotective role of anthocyanins in unripe fruits, and (4) verified whether green ripe fruits can assimilate carbon. METHODS: Using a paired experiment, we tested whether detection of ripe fruits was higher on infructescences with unripe and ripe fruits compared with infructescences with only ripe fruits. We also measured and compared gas exchange, chlorophyll a fluorescence, and heat dissipation of covered (to prevent anthocyanin synthesis) and uncovered ripe and unripe fruits. KEY RESULTS: Although the bicolored display was maintained over time, unripe fruits had no influence on bird detection and removal of ripe fruits. Ripe and unripe fruits did not assimilate CO2, but they respired instead. CONCLUSIONS: Since the communicative function of unripe fruits was not confirmed, seed dispersers are unlikely to select the display with bicolored fruits. Because of the absence of photosynthetic activity in ripe and unripe fruits and enhanced photoprotective mechanisms in ripe fruits rather than in unripe fruits, we could not confirm the photoprotective role of anthocyanins in unripe fruits. As an alternative hypothesis, we suggest that the bicolored fruit display could be an adaptation to diversify seed dispersal vectors instead of restricting dispersal to birds and that anthocyanins in unripe fruits may have a defense role against pathogens.


Subject(s)
Melastomataceae/physiology , Pigmentation , Seed Dispersal , Animals , Birds/physiology , Brazil , Color , Fruit/growth & development , Fruit/physiology , Herbivory , Melastomataceae/growth & development
5.
An Acad Bras Cienc ; 87(3): 1691-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26221991

ABSTRACT

Despite limitations of low fertility and high acidity of the soils, the cerrado flora is the richest amongst savannas. Many cerrado woody species show sclerophyllous leaves, which might be related to the availability of water and nutrients in the soil. To better understand the function and structure of cerrado vegetation within its own variations, we compared two cerrado communities: one in its core region in central Brazil (Brasília, DF) and the other on its southern periphery (Itirapina, SP). We contrasted the length of the dry season, soil fertility rates, leaf concentrations of N, P, K, Ca and Mg and the specific leaf area (SLA) between these communities. The dry season was shorter on the periphery, where the soil was more fertile although more acidic. Plants from the periphery showed higher SLA and higher leaf concentrations of N, P, Ca and Mg. We propose that the higher SLA of plants from the periphery is related to the shorter dry season, which allows better conditions for nutrient uptake.


Subject(s)
Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Soil/chemistry , Brazil , Calcium/analysis , Magnesium/analysis , Nitrogen/analysis , Phosphorus/analysis , Seasons , Trees/anatomy & histology , Trees/chemistry , Trees/classification
6.
An Acad Bras Cienc ; 87(2): 813-23, 2015.
Article in English | MEDLINE | ID: mdl-26062114

ABSTRACT

The cerrado's flora comprises aluminum-(Al) accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA) on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.


Subject(s)
Adaptation, Physiological , Aluminum/metabolism , Plant Leaves/chemistry , Ecosystem , Flavonoids/analysis , Metals/analysis , Plant Leaves/metabolism , Polyphenols/analysis
7.
Funct Plant Biol ; 39(6): 471-480, 2012 Jun.
Article in English | MEDLINE | ID: mdl-32480798

ABSTRACT

To understand the effect of summer and winter on the relationships between leaf carbohydrate and photosynthesis in citrus trees growing in subtropical conditions, 'Valencia' orange trees were subjected to external manipulation of their carbohydrate concentration by exposing them to darkness and evaluating the maximal photosynthetic capacity. In addition, the relationships between carbohydrate and photosynthesis in the citrus leaves were studied under natural conditions. Exposing the leaves to dark conditions decreased the carbohydrate concentration and increased photosynthesis in both seasons, which is in accordance with the current model of carbohydrate regulation. Significant negative correlations were found between total non-structural carbohydrates and photosynthesis in both seasons. However, non-reducing sugars were the most important carbohydrate that apparently regulated photosynthesis on a typical summer day, whereas starch was important on a typical winter day. As a novelty, photosynthesis stimulation by carbohydrate consumption was approximately three times higher during the summer, i.e. the growing season. Under subtropical conditions, citrus leaves exhibited relatively high photosynthesis and high carbohydrate levels on the summer day, as well as a high nocturnal consumption of starch and soluble sugars. A positive association was determined between photosynthesis and photoassimilate consumption/exportation, even in leaves showing a high carbohydrate concentration. This paper provides evidence that photosynthesis in citrus leaves is regulated by an increase in sink demand rather than by the absolute carbohydrate concentration in leaves.

8.
Funct Plant Biol ; 38(3): 209-218, 2011 Apr.
Article in English | MEDLINE | ID: mdl-32480877

ABSTRACT

Shoot and root lengths, the number of leaves, biomass and leaf area were measured in Styrax ferrugineus Nees and Mart., Styrax camporum Pohl. and Styrax pohlii A. DC cultivated in rhizotrons. Additionally, young individuals of these species were planted in a cerrado sensu stricto (s. str.), at the edge and in the understorey of a cerradão, and in the understorey of a riparian forest. Six months after planting, the specific leaf area (SLA) and the CO2 assimilation rate were assessed on an area (Aarea) and mass (Amass) basis. S. ferrugineus exhibited greater root and lower shoot length in comparison to S. pohlii. The high shoot growth and concomitantly substantial root length of S. camporum may illustrate why this species is widely distributed in the cerrado sensu lato areas, whereas the deep roots of S. ferrugineus could account for its occurrence in the cerrado s. str. In the field, an irradiance-diminishing gradient enlarged the SLA of S. pohlii, which positively influenced its Amass, and which could partially explain its occurrence in shady habitats. However, a non-plastic trait, such as the high shoot length of S. pohlii, is more likely to be responsible for the success of this species in forest habitats.

9.
Braz. arch. biol. technol ; 49(1): 29-36, Jan. 2006. tab, graf
Article in English | LILACS | ID: lil-427600

ABSTRACT

Clorose variegada dos citros (CVC) é uma doença causada por Xylella fastidiosa, podendo determinar oclusão do xilema e desbalanço hormonal, o que por fim está relacionado ao processo de iniciação radicial em estacas. Usando diferentes concentrações de fitorreguladores, como auxinas (ácido 3-indol butírico) e inibidores da biossíntese de ácido giberélico (paclobutrazol), que são promotores do enraizamento de estacas, verificou-se a capacidade fisiológica de enraizamento de estacas sadias e com CVC, a fim de investigar a importância do desbalanço hormonal e oclusão do xilema em plantas doentes. As porcentagens de estacas mortas, vivas, enraizadas e com calo e o número médio de raízes por estaca não mostraram diferenças estatísticas em resposta às diferentes concentrações dos reguladores vegetais sintéticos. Houve diferenças apenas entre estacas sadias e doentes. Isto aponta a importância da oclusão do xilema e distúrbios difusivos em plantas doentes, em relação à capacidade de iniciação radicial e à translocação hormonal no tecido vegetal.

SELECTION OF CITATIONS
SEARCH DETAIL
...