Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Gut Pathog ; 16(1): 18, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561807

ABSTRACT

BACKGROUND: The neutrophil percentage-to-albumin ratio (NPAR) is a novel measure of systemic inflammation and infection. Low albumin levels increase the risk of infection, while high neutrophil counts indicate the presence of infection. Spontaneous bacterial peritonitis (SBP) is a serious infection in cirrhotic ascites, and the potential of NPAR in diagnosing SBP is not yet established. OBJECTIVE: The objective of this study is to determine the diagnostic value of NPAR in identifying SBP. PATIENTS: This prospective multicenter study included 465 patients diagnosed with cirrhotic ascites and SBP according to international guidelines. Demographic, clinical, and laboratory data were collected. The sensitivity and specificity of NPAR values for diagnosing SBP were assessed using the receiver operating characteristic curve. RESULTS: For SBP diagnosis in the total cohort, NPAR of > 17 had a sensitivity of 85.71%, specificity of 66.67%, and 95% CI (42.1-99.6). In culture-positive SBP, the NPAR at a cut-off > 5.2 had a sensitivity of 85.71%, specificity of 83.33%, and 95% CI (0.709 to 0.979), while in culture-negative SBP, the NPAR at a cut-off > 2.1 had a sensitivity of 92.86%, specificity of 33.33% and CI (0.367 to 0.764). The multivariate analysis revealed that albumin (OR = 2.78, [1.11;3.98], INR (OR = 0.198, [0.066;0.596], creatinine (OR = 0.292, [0.1; 0.81], CRP (OR = 3.18, [1.239;4.52] total leukocytic count (TLC) (OR = 1.97, [1.878; 2.07], platelets (OR = 2.09, [0.99; 2.31] and neutrophil (OR = 3.43, [1.04;3.89] were significantly associated with higher prediction rates for culture positive SBP. CONCLUSIONS: NPAR could be a new, affordable, noninvasive test for diagnosing SBP.

2.
BMC Infect Dis ; 24(1): 134, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273234

ABSTRACT

BACKGROUND: Cytokines play a crucial role in regulating the function of the immune system by controlling the production, differentiation, and activity of immune cells. Occult hepatitis C virus (OHCV) infection can lead to liver damage, including cirrhosis and hepatocellular carcinoma. This study investigates the immunopathogenic impact of the cytokines IL-17 and IL-22 in OHCV infection compared to chronic hepatitis C (CHC) infection. METHODS: We studied three groups of patients: 35 with OHCV, 100 untreated patients with CHC, and 30 healthy control subjects. All subjects underwent physical examination and biochemical testing. We used the sandwich enzyme-linked immunosorbent assay method to measure serum IL-17 and IL-22 levels in all groups. RESULTS: Compared to the occult and control groups, the CHC group had significantly higher serum IL-17 levels (p < 0.001). The occult group also had higher serum IL-17 levels compared to the control group (p < 0.0001). There were no significant differences in IL-22 levels across the research groups. In the OHCV group, individuals with moderate inflammation (A2-A3) had significantly higher serum IL-17 levels than those with minimal inflammation (A0-A1), while in the CHC group, this difference was not statistically significant (p = 0.601). Neither the occult nor the CHC groups showed a correlation between serum IL-22 and inflammatory activity. There was no significant correlation between the levels of IL-17 or IL-22 and the stage of fibrosis/cirrhosis in either group. ROC curves were calculated for serum IL-17 and IL-22 levels and occult HCV infection, with cut-off values set at ≤ 32.1 pg/ml and < 14.3 pg/ml for IL-17 and IL-22, respectively. The AUROC (95%CI) was significantly higher for IL-17 than IL-22 (0.829 (0.732-0.902) vs. 0.504 (0.393-0.614), p < 0.001), suggesting that IL-17 has a stronger correlation with infection risk than IL-22. CONCLUSION: This study suggests that IL-17 may be involved in the immunopathogenesis of OHCV infection, especially in patients with moderate inflammation.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Humans , Cytokines , Fibrosis , Hepacivirus , Inflammation , Interleukin-17 , Interleukin-22 , Liver Cirrhosis
4.
Risk Manag Healthc Policy ; 16: 805-816, 2023.
Article in English | MEDLINE | ID: mdl-37168682

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) has become an alarming issue worldwide. Kingdom of Saudi Arabia was fast in adopting the safety precaution measures and is considered one of the major countries that place preventive precautions measures to control the spread of the disease. The current study aims to assess the knowledge, effectiveness, and acceptance of the public regarding COVID-19 safety precautions measures: face masks, physical distance, wash hands/use hand sanitizer, and the use of Tawakkalna application as a preventive measure in the Kingdom of Saudi Arabia. Methods: The study design was quantitative cross-sectional using a self-administered questionnaire. Results: Of the 400 received responses, the data analysis showed that there was a significant association between knowledge about the safety precaution measures score with nationality and gender with P value less than 0.05. Conclusion: The awareness of Saudi citizens of the importance of implementing preventive precautions and their compliance greatly contributed in limiting the virus spread.

5.
Eur J Med Res ; 28(1): 168, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173752

ABSTRACT

BACKGROUND AND AIM: There is lack of 30-day hospital readmission prediction score in patients with liver cirrhosis and SBP. The aim of this study is to recognize factors capable of predicting 30-day readmission and to develop a readmission risk score in patients with SBP. METHODS: This study prospectively examined the 30-day hospital readmission for patients previously discharged with a diagnosis of SBP. Based on index hospitalization variables, a multivariable logistic regression model was implemented to recognize predictors of patient hospital readmission within 30 days. Consequently, Mousa readmission risk score was established to predict 30-day hospital readmission. RESULTS: Of 475 patients hospitalized with SBP, 400 patients were included in this study. The 30-day readmission rate was 26.5%, with 16.03% of patients readmitted with SBP. Age ≥ 60, MELD > 15, serum bilirubin > 1.5 mg/dL, creatinine > 1.2 mg/dL, INR > 1.4, albumin < 2.5 g/dL, platelets count ≤ 74 (103/dL) were found to be independent predictors of 30-day readmission. Incorporating these predictors, Mousa readmission score was established to predict 30-day patient readmissions. ROC curve analysis demonstrated that at a cutoff value ≥ 4, Mousa score had optimum discriminative power for predicting the readmission in SBP with sensitivity 90.6% and specificity 92.9%. However, at cutoff value ≥ 6 the sensitivity and specificity were 77.4% and 99.7%, respectively, while a cutoff value ≥ 2 had sensitivity of 99.1% and specificity of 31.6%. CONCLUSIONS: The 30-day readmission rate of SBP was 25.6%. With the suggested simple risk assessment Mousa score, patients at high risk for early readmission can be easily identified so as to possibly prevent poorer outcomes.


Subject(s)
Bacterial Infections , Peritonitis , Humans , Patient Readmission , Bacterial Infections/complications , Bacterial Infections/diagnosis , Retrospective Studies , Risk Factors , Liver Cirrhosis/complications , Peritonitis/diagnosis , Peritonitis/microbiology
6.
Front Cell Dev Biol ; 11: 1060156, 2023.
Article in English | MEDLINE | ID: mdl-36733461

ABSTRACT

Kaposi's sarcoma associated herpesvirus (KSHV) is causative agent of Kaposi's sarcoma, Multicentric Castleman Disease and Pleural effusion lymphoma. KSHV-encoded ORF17 encodes a protease which cleaves -Ala-Ala-, -Ala-Ser- or -Ala-Thr-bonds. The protease plays an important role in assembly and maturation of new infective virions. In the present study, we investigated expression pattern of KSHV-encoded protease during physiologically allowed as well as chemically induced reactivation condition. The results showed a direct and proportionate relationship between ORF17 expression with reactivation time. We employed virtual screening on a large database of natural products to identify an inhibitor of ORF17 for its plausible targeting and restricting Kaposi's sarcoma associated herpesvirus assembly/maturation. A library of 307,814 compounds of biological origin (A total 481,799 structures) has been used as a screen library. 1-oleoyl-2-hydroxy-sn-glycero-3-phospho-(1'-myo-inositol) was highly effective against ORF17 in in-vitro experiments. The screened compound was tested for the cytotoxic effect and potential for inhibiting Kaposi's sarcoma associated herpesvirus production upon induced reactivation by hypoxia, TPA and butyric acid. Treatment of reactivated KSHV-positive cells with 1-oleoyl-2-hydroxy-sn-glycero-3-phospho-(1'-myo-inositol) resulted in significant reduction in the production of Kaposi's sarcoma associated herpesvirus. The study identified a lysophosphatidic acid molecule for alternate strategy to inhibit KSHV-encoded protease and target Kaposi's sarcoma associated herpesvirus associated malignancies.

7.
PLoS One ; 18(2): e0262790, 2023.
Article in English | MEDLINE | ID: mdl-36730213

ABSTRACT

Sixteen fuberidazole derivatives as potential new anticancer bioreductive prodrugs were prepared and characterized. The in vitro anticancer potential was examined to explore their cytotoxic properties by employing apoptosis, DNA damage, and proliferation tests on chosen hypoxic cancer cells. Eight substances (Compound 5a, 5c, 5d, 5e, 5g, 5h, 5i, and 5m) showed promising cytotoxicity values compared to the standard control. The potential of compounds was also examined through in silico studies (against human serum albumin), including chem-informatics, to understand the structure-activity relationship (SAR), pharmacochemical strength, and the mode of interactions responsible for their action. The DFT calculations revealed that only the 5b compound showed the lowest ΔET (2.29 eV) while 5i showed relatively highest ßtot (69.89 x 10-31 esu), highest αave (3.18 x 10-23 esu), and dipole moment (6.49 Debye). This study presents a novel class of fuberidazole derivatives with selectivity toward hypoxic cancer cells.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Molecular Docking Simulation , Fluorine , Structure-Activity Relationship , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Molecular Structure , Drug Screening Assays, Antitumor
8.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36670996

ABSTRACT

Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential of Gymnema sylvestre saponin rich fraction (GSSRF) on breast cancer cell lines (MCF-7 and MDA-MB-468) by SRB assay. The anti-tumor activity of GSSRF was assessed in tumor-bearing Elrich ascites carcinoma (EAC) and Dalton's lymphoma ascites (DLA) mouse models. The anti-oxidant potential of GSSRF was assessed by DPPH radical scavenging assay. The acute toxicity of GSSRF was carried out according to OECD guideline 425. The yield of GSSRF was around 1.4% and the presence of saponin content in GSSRF was confirmed by qualitative and Fourier transform infrared spectroscopic (FTIR) analysis. The in vitro cytotoxic effects of GSSRF on breast cancer cell lines were promising and found to be dose-dependent. An acute toxicity study of GSSRF was found to be safe at 2000 mg/kg body weight. GSSRF treatment has shown a significant increase in the body weight and the life span of EAC-bearing mice in a dose-dependent manner when compared with the control group. In the solid tumor model, the doses of 100 and 200 mg/kg body weight per day have shown about 46.70% and 60.80% reduction in tumor weight and controlled the tumor weight until the 30th day when compared with the control group. The activity of GSSRF in both models was similar to the cisplatin, a standard anticancer agent used in the study. Together, these results open the door for detailed investigations of anti-tumor potentials of GSSRF in specific tumor models, mechanistic studies and clinical trials leading to promising novel therapeutics for cancer therapy.

9.
J Biomol Struct Dyn ; 41(9): 4013-4023, 2023 06.
Article in English | MEDLINE | ID: mdl-35451934

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is one of the rapid spreading coronaviruses that belongs to the Coronaviridae family. The rapidly evolving nature of SARS-CoV-2 results in a variety of variants with a capability of evasion to existing therapeutics and vaccines. So, there is an imperative need to discover potent drugs that can able to disrupt the function of multiple drug targets to tackle the SARS-CoV-2 menace. Here in this study, we took the different targets of SARS-CoV-2 prepared in the Schrodinger maestro. The library of the DrugBank database is screened against the selected crucial targets. Our molecular docking, Molecular Mechanics/Generalized Born Surface Area (MMGBSA), and molecular dynamics simulation studies led to identifying dinaciclib and theodrenaline as potential drugs against multiple drug targets: main protease, NSP15-endoribonuclease and papain-like-protease, of SARS-CoV-2. Dinaciclib with papain-like protease and NSP15-endoribonuclease show the docking score of -7.015 and -8.737, respectively, while the theodrenaline with NSP15-endoribonuclease and main protease produced the docking score of -8.507 and -7.289, respectively. Furthermore, the binding free energy calculations with MM/GBSA and molecular dynamics simulation studies of the complexes confirm the reliability of the drugs. The selected drugs are capable of binding to multiple targets simultaneously, thus withstanding their activity of target disruption in different variants of SARS-CoV-2. Although, the repurposed drugs are showing potent activity, but may need further in-vitro and in-vivo validations.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Humans , Molecular Docking Simulation , Papain , Reproducibility of Results , SARS-CoV-2 , Peptide Hydrolases , Endoribonucleases , Molecular Dynamics Simulation , Protease Inhibitors
10.
Neurogenetics ; 24(1): 55-60, 2023 01.
Article in English | MEDLINE | ID: mdl-36190665

ABSTRACT

Cerebellar ataxias (CAs) comprise a rare group of neurological disorders characterized by extensive phenotypic and genetic heterogeneity. In the last several years, our understanding of the CA etiology has increased significantly and resulted in the discoveries of numerous ataxia-associated genes. Herein, we describe a single affected individual from a consanguineous family segregating a recessive neurodevelopmental disorder. The proband showed features such as global developmental delay, cerebellar atrophy, hypotonia, speech issues, dystonia, and profound hearing impairment. Whole-exome sequencing and Sanger sequencing revealed a biallelic nonsense variant (c.496A > T; p.Lys166*) in the exon 5 of the PRDX3 gene that segregated perfectly within the family. This is the third report that associates the PRDX3 gene variant with cerebellar ataxia. In addition, associated hearing impairment further delineates the PRDX3 associated gene phenotypes.


Subject(s)
Cerebellar Ataxia , Cerebellar Diseases , Humans , Ataxia , Cerebellar Ataxia/genetics , Consanguinity , Family , Pedigree , Peroxiredoxin III/genetics
11.
Int J Dev Neurosci ; 83(2): 191-200, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36527195

ABSTRACT

Neurodevelopmental disorders (NDDs) are classified as a group of disorders affecting function and development of the brain and having wide clinical variability. Herein, we describe two affected individuals segregating a recessive NDD. The affected individuals exhibited phenotypes such as global developmental delay (GDD), intellectual disability (ID), microcephaly and speech delay. Whole-exome sequencing (WES) followed by bidirectional Sanger sequencing techniques identified a homozygous nonsense variant (c.466C > T; p.Gln156*) in the PPFIBP1 gene (NM_003622.4) that segregated with the disease phenotype. Further, to elucidate the effect of the variant on protein structure, 3D protein modelling was performed for the mutant and normal protein that suggested substantial reduction of the mutant protein. Our data support the evidence that PPFIBP1 has a pivotal role in neurodevelopment in humans, and loss-of-function variants cause clinically variable neurodevelopmental phenotypes.


Subject(s)
Intellectual Disability , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Carrier Proteins/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Brain , Proteins/genetics , Phenotype , Adaptor Proteins, Signal Transducing/genetics
12.
J Biomol Struct Dyn ; 41(18): 9121-9133, 2023.
Article in English | MEDLINE | ID: mdl-36318617

ABSTRACT

The pandemic that started in 2020 left us with so much information about viruses and respiratory diseases, and the cause behind it was severe acute respiratory syndrome coronavirus-2 (SARS CoV-2). The world is still recovering, which costs so many economic and other indirect disasters; despite that, no medications are available on the market. Although the WHO approved a few vaccines on an emergency basis, the remarks and the reinfection chances are still under investigation, and a few pharmaceutical companies are also claiming that a few medications can be effective. However, there is no situation in control. SARS CoV-2 mutates and comes in different forms, making the situation unpredictable. In this study, we have screened the complete Asinex's BioDesign library, which contains 170,269 compounds, and shorted the data against the docking score that helps in the identification of 4-[5-(3-Ethoxy-4-hydroxyphenyl)-1-(2-hydroxyethyl)-1H-pyrazol-3-yl]-1, 2-benzenediol (PheroxyPyrabenz) and 1-[(3R,4R)-1-(5-Aminopentanoyl)-4-hydroxy-3-pyrrolidinyl]-1H-pyrrolo[2,3-b]pyridine-4-carboxamide (Carbopyrropyridin) as a significant drug candidate that can work against the multiple proteins of the SARS CoV-2 resulting in seizing the complete biological process of the virus. Further, the study extended to Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and molecular dynamics (MD) simulation of both the compounds with their complexity. The complete workflow of the study has shown satisfactory results, and both drug candidates can potentially stop the hunt for drugs against this virus after its experimental validation. Further, we checked both compounds' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, showing case-proof validatory results.Communicated by Ramaswamy H. Sarma.

13.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36558918

ABSTRACT

Natural biometabolites of plants have been reported to be useful in chronic diseases including diabetes and associated complications. This research is aimed to investigate how the biometabolites of Lasia spinosa methanol stem (MEXLS) extract ameliorative diabetes and diabetes-related complications. MEXLS was examined for in vitro antioxidant and in vivo antidiabetic effects in a streptozotocin-induced diabetes model, and its chemical profiling was done by gas chromatography-mass spectrometry analysis. The results were verified by histopathological examination and in silico ligand-receptor interaction of characterized natural biometabolites with antidiabetic receptor proteins AMPK (PDB ID: 4CFH); PPARγ (PDB ID: 3G9E); and mammalian α-amylase center (PDB ID: 1PPI). The MEXLS was found to show a remarkable α-amylase inhibition (47.45%), strong antioxidant action, and significant (p < 0.05) decrease in blood glucose level, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein (LDL), urea, uric acid, creatinine, total cholesterol, triglyceride (TG), liver glycogen, creatinine kinase (CK-MB), and lactate dehydrogenase (LDH) and increase in serum insulin, glucose tolerance, and high-density lipoprotein (HDL). Rat's pancreas and kidney tissues were found to be partially recovered in histopathological analyses. Methyl α-d-galactopyranoside displayed the highest binding affinity with AMPK (docking score, −5.764), PPARγ (docking score, −5.218), and 1PPI (docking score, −5.615) receptors. Data suggest that the MEXLS may be an exciting source to potentiate antidiabetic activities affirming a cell-line study.

14.
Front Chem ; 10: 1034911, 2022.
Article in English | MEDLINE | ID: mdl-36247661

ABSTRACT

Human noroviruses (NV) are the most prevalent cause of sporadic and pandemic acute gastroenteritis. NV infections cause substantial morbidity and death globally, especially amongst the aged, immunocompromised individuals, and children. There are presently no authorized NV vaccines, small-molecule therapies, or prophylactics for humans. NV 3 C L protease (3CLP) has been identified as a promising therapeutic target for anti-NV drug development. Herein, we employed a structure-based virtual screening method to screen a library of 700 antiviral compounds against the active site residues of 3CLP. We report three compounds, Sorafenib, YM201636, and LDC4297, that were revealed to have a higher binding energy (BE) value with 3CLP than the control (Dipeptidyl inhibitor 7) following a sequential screening, in-depth molecular docking and visualization, physicochemical and pharmacological property analysis, and molecular dynamics (MD) study. Sorafenib, YM201636, and LDC4297 had BEs of -11.67, -10.34, and -9.78 kcal/mol with 3CLP, respectively, while control had a BE of -6.38 kcal/mol. Furthermore, MD simulations of the two best compounds and control were used to further optimize the interactions, and a 100 ns MD simulation revealed that they form stable complexes with 3CLP. The estimated physicochemical, drug-like, and ADMET properties of these hits suggest that they might be employed as 3CLP inhibitors in the management of gastroenteritis. However, wet lab tests are a prerequisite to optimize them as NV 3CLP inhibitors.

15.
Entropy (Basel) ; 24(7)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35885104

ABSTRACT

The association of COVID-19 with neurological complications is a well-known fact, and researchers are endeavoring to investigate the mechanistic perspectives behind it. SARS-CoV-2 can bind to Toll-like receptor 4 (TLR-4) that would eventually lead to α-synuclein aggregation in neurons and stimulation of neurodegeneration pathways. Olive leaves have been reported as a promising phytotherapy or co-therapy against COVID-19, and oleuropein is one of the major active components of olive leaves. In the current study, oleuropein was investigated against SARS-CoV-2 target (main protease 3CLpro), TLR-4 and Prolyl Oligopeptidases (POP), to explore oleuropein potency against the neurological complications associated with COVID-19. Docking experiments, docking validation, interaction analysis, and molecular dynamic simulation analysis were performed to provide insight into the binding pattern of oleuropein with the three target proteins. Interaction analysis revealed strong bonding between oleuropein and the active site amino acid residues of the target proteins. Results were further compared with positive control lopinavir (3CLpro), resatorvid (TLR-4), and berberine (POP). Moreover, molecular dynamic simulation was performed using YASARA structure tool, and AMBER14 force field was applied to examine an 100 ns trajectory run. For each target protein-oleuropein complex, RMSD, RoG, and total potential energy were estimated, and 400 snapshots were obtained after each 250 ps. Docking analyses showed binding energy as -7.8, -8.3, and -8.5 kcal/mol for oleuropein-3CLpro, oleuropein-TLR4, and oleuropein-POP interactions, respectively. Importantly, target protein-oleuropein complexes were stable during the 100 ns simulation run. However, an experimental in vitro study of the binding of oleuropein to the purified targets would be necessary to confirm the present study outcomes.

16.
Front Neurosci ; 16: 925991, 2022.
Article in English | MEDLINE | ID: mdl-35692417

ABSTRACT

Brain-derived neurotrophic factor (BDNF) involving tropomyosin kinase B and low affinity p75 neurotropin receptors is the most abundant and researched neurotropins in mammal's brain. It is one of the potential targets for therapeutics in Alzheimer's disease (AD) owing to its key role in synaptic plasticity. Low levels of BDNF are implicated in the pathophysiology of neurological diseases including AD. However, a healthy lifestyle, exercise, and dietary modifications are shown to positively influence insulin regulation in the brain, reduce inflammation, and up-regulate the levels of BDNF, and are thus expected to have roles in AD. In this review, the relationship between BDNF, mental health, and AD is discussed. Insights into the interrelationships between nutrition, lifestyle, and environment with BDNF and possible roles in AD are also provided in the review. The review sheds light on the possible new therapeutic targets in neurodegenerative diseases.

17.
Biomolecules ; 12(5)2022 04 19.
Article in English | MEDLINE | ID: mdl-35625530

ABSTRACT

Alopecia areata (AA) is a type of immune-mediated alopecia. Recent studies have suggested microRNAs' (miRNAs) implication in several cellular processes, including epidermal and hair follicle biology. Single nucleotide polymorphisms (SNPs) can modify gene expression levels, which may induce an autoimmune response. This case−control study included 480 participants (240 for each case/control group). MicroRNA-34a gene (MIR-34A) rs2666433A/G variant was genotyped using real-time allelic discrimination polymerase chain reaction (PCR). Additionally, circulatory miR-34a levels were quantified by quantitative reverse transcription PCR (qRT-PCR). On comparing between alopecia and non-alopecia cohorts, a higher frequency of A variant was noted among patients when compared to controls­A allele: 28 versus 18% (p < 0.001); A/A genotype: 9 versus 2%; A/G genotype: 39 versus 32% (p < 0.001). A/A and A/G carriers were more likely to develop alopecia under heterozygote comparison (OR = 1.83, 95% CI = 1.14−2.93), homozygote comparison (OR = 4.19, 95% CI = 1.33−13.1), dominant (OR = 2.0, 95% CI = 1.27−3.15), recessive (OR = 3.36, 95% CI = 1.08−10.48), over-dominant (OR = 1.65, 95% CI = 1.04−32.63), and log additive (OR = 1.91, 95% CI = 1.3−2.82) models. Serum miR-34a expression levels were upregulated in alopecia patients with a median and quartile fold change of 27.3 (1.42−2430). Significantly higher levels were more pronounced in A/A genotype patients (p < 0.01). Patients carrying the heterozygote genotype (rs2666433 * A/G) were two times more likely to develop more severe disease grades. Stratified analysis by sex revealed the same results. A high expression level was associated with concomitant autoimmune comorbidities (p = 0.001), in particular SLE (p = 0.007) and vitiligo (p = 0.049). In conclusion, the MIR34A rs2666433 (A/G) variant is associated with AA risk and severity in the studied population. Furthermore, high miR-34a circulatory levels could play a role in disease pathogenesis.


Subject(s)
Alopecia Areata , MicroRNAs , Alopecia Areata/genetics , Case-Control Studies , Cross-Sectional Studies , Genetic Predisposition to Disease , Hair Follicle , Humans , MicroRNAs/blood , MicroRNAs/genetics
18.
Front Genet ; 13: 878274, 2022.
Article in English | MEDLINE | ID: mdl-35571055

ABSTRACT

Intellectual disability (ID) has become very common and is an extremely heterogeneous disorder, where the patients face many challenges with deficits in intellectual functioning and adaptive behaviors. A single affected family revealed severe disease phenotypes such as ID, developmental delay, dysmorphic facial features, postaxial polydactyly type B, and speech impairment. DNA of a single affected individual was directly subjected to whole exome sequencing (WES), followed by Sanger sequencing. Data analysis revealed a novel biallelic missense variant (c.1511G>C; p.(Trp504Ser)) in the ALKBH8 gene, which plays a significant role in tRNA modifications. Our finding adds another variant to the growing list of ALKBH8-associated tRNA modifications causing ID and additional phenotypic manifestations. The present study depicts the key role of the genes associated with tRNA modifications, such as ALKBH8, in the development and pathophysiology of the human brain.

19.
J Cell Mol Med ; 26(12): 3343-3363, 2022 06.
Article in English | MEDLINE | ID: mdl-35502486

ABSTRACT

Since ancient times, plants have been used as green bioresources to ensure a healthier life by recovering from different diseases. Kattosh (Lasia spinosa L. Thwaites) is a local plant with various traditional uses, especially for arthritis, constipation and coughs. This research investigated the effect of Kattosh stem extract (LSES) on streptozotocin-induced damage to the pancreas, kidney, and liver using in vitro, in vivo and in silico methods. In vitro phytochemical, antioxidative and anti-inflammatory effects of LSES were accomplished by established methods followed by antidiabetic actions in in vivo randomized controlled intervention in STZ-induced animal models for four weeks. In an in silico study, LSES phytocompounds interacted with antidiabetic receptors of peroxisome proliferator-activated receptor-gamma (PPAR, PDB ID: 3G9E), AMP-activated protein kinase (AMPK, PDB ID: 4CFH) and α-amylase enzyme (PDB ID: 1PPI) to verify the in vivo results. In addition, LSES showed promising in vitro antioxidative and anti-inflammatory effects. In contrast, it showed a decrease in weekly blood glucose level, normalized lipid profile, ameliorated liver and cardiac markers, managed serum AST and ALT levels, and increased glucose tolerance ability in the animal model study. Restoration of pancreatic and kidney damage was reflected by improving histopathological images. In ligand-receptor interaction, ethyl α-d-glucopyranoside of Kattosh showed the highest affinity for the α-amylase enzyme, PPAR, and AMPK receptors. Results demonstrate that the affinity of Kattosh phytocompounds potentially attenuates pancreatic and kidney lesions and could be approached as an alternative antidiabetic source with further clarification.


Subject(s)
PPAR gamma , Plant Extracts , AMP-Activated Protein Kinases , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Kidney/pathology , PPAR gamma/metabolism , Pancreas/pathology , Plant Extracts/pharmacology , Streptozocin/toxicity , alpha-Amylases/pharmacology
20.
Bioinformation ; 18(5): 482-487, 2022.
Article in English | MEDLINE | ID: mdl-36945223

ABSTRACT

It is well-acknowledged that 'combination therapy' of antibiotics is indispensable for the treatment of patients suffering from serious bacterial infections. Therefore, it is of interest to collect data from the in vitro tests using 'rifampicin-cefotaxime' and 'rifampicin-tetracycline' combination regimens against multi drug resistant Escherichia coli and Klebsiella pneumoniae strains of nosocomial source in order to determine the effectiveness of the combination therapy. The minimum inhibitory concentration (MIC) values for cefotaxime, tetracycline and rifampicin antibiotics were found to be comparatively high for each of the antibiotics when given individually. However, carefully prepared combination-regimens exhibited significant inhibitory effect on the same bacterial isolates. DNA fragmentation study confirmed that 'rifampicin-cefotaxime' and 'rifampicin-tetracycline' combination-regimens could cause breakage of the bacterial DNA. Thus, we show that combination-regimens namely, 'rifampicin-cefotaxime' and 'rifampicin-tetracycline' were found to be capable of maintaining rifampicin susceptibility in the E. coli and K. pneumoniae strains. However, this susceptibility was not maintained by only rifampicin. More data using animal model experiments are needed for confirming and deriving translational benefits from these findings in future.

SELECTION OF CITATIONS
SEARCH DETAIL
...