Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Dev Technol ; 28(7): 585-594, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37310754

ABSTRACT

PURPOSE: This work aimed to fabricate alginate based in-situ gelling matrix of vildagliptin improved by calcium and carboxy methyl cellulose (CMC) for appropriate adjustment of the onset and duration of action. This easy-to-swallow thickened liquid preparation aimed to improve compliance for dysphagic or elderly diabetic patients. METHODS: Vildagliptin dispersions containing alginate were fabricated in the presence or absence of calcium chloride to assess the effect of calcium ion, then a matrix containing 1.5% w/v of sodium alginate with calcium was further examined after the addition of CMC with different concentrations ranging from 0.1% to 0.3%. The viscosity, gelling forming property, Differential scanning calorimetry, and in-vitro drug release were assessed before monitoring the hypoglycemic effect of the selected formulation. RESULTS: In-situ gel matrixes were fabricated at gastric pH with and without calcium ions. The best formula concerning viscosity and the gel-forming property was achieved with higher CMC concentrations, which in turn decreased the rate of vildagliptin release in stimulated gastric pH. In-vivo results confirmed the extended hypoglycemic effect of the vildagliptin in-situ gelling matrix compared to the vildagliptin aqueous solution. CONCLUSION: This study represents a green polymeric-based in-situ gel as a liquid oral retarded release preparation intended for reducing dose frequency, easier administration of vildagliptin, and improving compliance in geriatric and dysphagic diabetic patients.


Subject(s)
Diabetes Mellitus , Polymers , Humans , Aged , Delayed-Action Preparations/chemistry , Vildagliptin , Calcium/chemistry , Viscosity , Hypoglycemic Agents/therapeutic use , Alginates/chemistry , Gels/chemistry
4.
Int J Pharm ; 589: 119835, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32890654

ABSTRACT

Ocular inflammation is a natural defensive phenomenon, but, it results in discomfort in the eye; as well as makes the eye vulnerable to other diseases. The aim of this work is to investigate that Curcumin (CUR) could be an effective safer biofreindly alternative for treatment of ocular inflammation. Complete in-vitro characterization of proniosomal gel loading-CUR using different surfactants was studied. A comparative in-vivo evaluation of selected formulation to a marketed corticosteroid drops in induced-eye inflammation model in rabbits was assessed. The selected formulation (FCr 300) composed of Cremophore RH surfactant, lecithin and cholesterol (9:9:1) loading CUR (1.2% w/w). The formulation showed mean PS(212.0 ± 0.1)nm, PDI (0.3 ± 0.1) , ZP(-5.1 ± 0.2)mV and % EE (96.0 ± 0.1). TEM showed multilamellar circular shaped niosomes with smooth surface. SEM showed ruptured vesicles for the lyophilized formula. Selected proniosomal gel showed enhanced permeability 3.22-fold and 1.76-fold higher than CUR dispersion and its lyophilized form respectively. Both proniosomal gel (FCr300) and corticosteroid drops reduced the induced inflammatory signs effectively by 40% on day-one and complete recovery on day-four. This anti-inflammatory result was confirmed by histopathological analysis after treatment. Assessment of cumulative IOP as a predicted side effect verified the goal of this work. In conclusion, the use of CUR as a natural biofreindly alternative to the current chemical conventional ocular anti-inflammatory treatment protocols is comparable as an anti-inflammatory drug with much less side effects.


Subject(s)
Curcumin , Animals , Drug Carriers , Eye , Gels , Inflammation/drug therapy , Liposomes , Particle Size , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...