Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(8): 3122-3127, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36867120

ABSTRACT

Conventional plasmonic nanoantennas enable scattering and absorption bands at the same wavelength region, making their utilization to full potential impossible for both features simultaneously. Here, we take advantage of spectrally separated scattering and absorption resonance bands in hyperbolic meta-antennas (HMA) to enhance the hot-electron generation and prolong the relaxation dynamics of hot carriers. First, we show that HMA enables extending plasmon-modulated photoluminescence spectrum toward longer wavelengths due to its particular scattering spectrum, in comparison to the corresponding nanodisk antennas (NDA). Then, we demonstrate that the tunable absorption band of HMA controls and modifies the lifetime of the plasmon-induced hot electrons with enhanced excitation efficiency in the near-infrared region and also broadens the utilization of the visible/NIR spectrum in comparison to NDA. Thus, the rational heterostructures designed by plasmonic and adsorbate/dielectric layers with such dynamics can be a platform for optimization and engineering the utilization of plasmon-induced hot carriers.

2.
ACS Appl Nano Mater ; 4(9): 8699-8705, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34595402

ABSTRACT

Planar metasurfaces provide exceptional wavefront manipulation at the subwavelength scale by controlling the phase of the light. Here, we introduce an out-of-plane nanohole-based metasurface design with the implementation of a unique self-rolling technique. The photoresist-based technique enables the fabrication of the metasurface formed by nanohole arrays on gold (Au) and silicon dioxide (SiO2) rolled-up microtubes. The curved nature of the tube allows the fabrication of an out-of-plane metasurface that can effectively control the wavefront compared to the common planar counterparts. This effect is verified by the spectral measurements of the fabricated samples. In addition, we analytically calculated the dispersion relation to identify the resonance wavelength of the structure and numerically calculate the phase of the transmitted light through the holes with different sizes. Our work forms the basis for the unique platform to introduce a new feature to the metasurfaces, which may find many applications from stacked metasurface layers to optical trapping particles inside the tube.

SELECTION OF CITATIONS
SEARCH DETAIL
...