Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 873-888, 2024 02.
Article in English | MEDLINE | ID: mdl-37522915

ABSTRACT

Vascular calcification (VC) is a major risk factor for cardiovascular events. A mutual interplay between inflammation, oxidative stress, apoptosis, and autophagy is implicated in its development. Herein, we aimed to evaluate the potential protective effects of canagliflozin in a vitamin D3 plus nicotine (VDN) model of VC, and to explore potential mechanisms. VC was induced by VDN in adult male Wistar rats on day one. Then, rats were randomly assigned into three groups to receive canagliflozin (10 mg or 20 mg/kg/day) or its vehicle for 4 weeks. Age-matched normal rats served as a control group. After euthanization, aorta and kidneys were harvested for biochemical and histopathological evaluation of calcification. Aortic markers of oxidative stress, alkaline phosphatase (ALP) activity, runt-related transcription factor (Runx2) and bone morphogenic protein-2 (BMP-2) levels were determined. Additionally, the protein expression of autophagic markers, LC3 and p62, and adenosine monophosphate activated protein kinase (AMPK) were also assessed in aortic homogenates. Canagliflozin dose-dependently improved renal function, enhanced the antioxidant capacity of aortic tissues and reduced calcium deposition in rat aortas and kidneys. Both doses of canagliflozin attenuated ALP and osteogenic markers while augmented the expression of autophagic markers and AMPK. Histopathological examination of aortas and kidneys by H&E and Von Kossa stain further support the beneficial effect of canagliflozin. Canagliflozin could alleviate VDN-induced vascular calcification, in a dose dependent manner, via its antioxidant effect and modulation of autophagy. Further studies are needed to verify whether this effect is a member or a class effect.


Subject(s)
Cholecalciferol , Vascular Calcification , Rats , Male , Animals , Cholecalciferol/pharmacology , Nicotine/adverse effects , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , AMP-Activated Protein Kinases , Rats, Sprague-Dawley , Rats, Wistar , Vascular Calcification/chemically induced , Vascular Calcification/drug therapy , Vascular Calcification/prevention & control , Autophagy
2.
Life Sci ; 334: 122220, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37898455

ABSTRACT

AIMS: This study aimed to investigate the therapeutic influence of combination therapy with sericin and melatonin on attenuating diethylnitrosamine (DEN)-instigated testicular dysfunction in mice and defining the molecular mechanisms involved in orchestrating redox signaling pathways and restoring spermatogenesis and steroidogenesis. MATERIALS AND METHODS: Different groups of male Swiss albino mice were established and injected with respective drugs intraperitoneally. Semen analysis, hormonal assays, and oxidative stress biomarkers were evaluated. Additionally, melatonin and its receptors, WT1, SF-1, vimentin, Nrf2, and ANXA1 expressions were assessed. Histopathological and ultrastructural features of the testes were investigated by semithin, SEM, and TEM analyses. KEY FINDINGS: Exposure to DEN exhibited pathophysiological consequences, including a remarkable increase in lipid peroxidation associated with substantial diminutions in SOD, CAT, GPx, GSH, GSH:GSSG, and GST. Furthermore, it disrupted spermatozoa integrity, testosterone, FSH, LH, melatonin, and its receptors (MT1 and MT2) levels, implying spermatogenesis dysfunction. By contrast, treatment with sericin and melatonin significantly restored these disturbances. Interestingly, the combination therapy of sericin and melatonin noticeably augmented the Nrf2, WT1, and SF-1 expressions compared to DEN-treated mice, deciphering the amelioration perceived in antioxidant defense and spermatogenesis inside cells. Furthermore, immunohistochemical detection of ANXA1 alongside histopathological and ultrastructural analyses revealed evident maintenance of testicular structures without discernible inflammation or anomalies in mice administered with sericin and melatonin compared to the DEN-treated group. SIGNIFICANCE: Our findings highlighted that treatment with sericin and melatonin alleviated the testicular tissues in mice from oxidative stress and dysregulated spermatogenesis and steroidogenesis engendered by DEN.


Subject(s)
Melatonin , Sericins , Male , Mice , Animals , Testis/metabolism , Melatonin/pharmacology , Melatonin/metabolism , NF-E2-Related Factor 2/metabolism , Sericins/pharmacology , Sericins/metabolism , Diethylnitrosamine , Oxidative Stress , Spermatogenesis , Antioxidants/metabolism , Signal Transduction , WT1 Proteins/metabolism
3.
Can J Physiol Pharmacol ; 101(11): 610-619, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37721213

ABSTRACT

Platelet hyperactivity is one of the key factors implicated in the development and progression of diabetic vascular complications. Activated platelets mediate leukocyte recruitment that further enhances inflammatory responses in vascular wall ultimately resulting in atherosclerotic complications. Since vitamin D insufficiency is highly prevalent in diabetics, we aimed to evaluate the effect of three dosage forms of vitamin D supplementation on lipid profile, NF-κB, platelet aggregation, and platelet calcium content in type 2 diabetic patients. Type 2 diabetic patients were randomized to receive daily (4000 IU/day) or weekly (50 000 IU/week) oral vitamin D3 for 3 months. Another group received a single parenteral dose (300 000 IU) of vitamin D3, whereas the control group received their antidiabetic drug(s) alone. Serum 25(OH)D, total cholesterol, triglycerides, high- and low-density lipoprotein cholesterol, NF-κB, and platelet aggregation were measured at the beginning and 3 months after vitamin D supplementation. Platelet calcium content was evaluated by measuring the fluorescence intensity of Rhod-2-stained platelets by confocal fluorescence microscopy. Results showed that serum 25(OH)D3 levels significantly increased in all vitamin D3-treated groups. However, the mean level for parenteral treated group was significantly lower than oral-treated groups. Oral and parenteral treatment were also able to decrease NF-κB level, platelet aggregation, and platelet calcium content. However, both oral doses of vitamin D3 were superior to the single parenteral dose. In conclusion, restoring normal levels of vitamin D is an important determinant to maintain normal platelet function and reduce inflammation. Nevertheless, further long-term studies are still needed.


Subject(s)
Diabetes Mellitus, Type 2 , Vitamin D Deficiency , Humans , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , NF-kappa B , Calcium/therapeutic use , Platelet Aggregation , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamin D , Dietary Supplements , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Cholesterol
4.
PLoS One ; 18(2): e0282246, 2023.
Article in English | MEDLINE | ID: mdl-36854038

ABSTRACT

Yucca aloifolia L. fruit (Yucca or Spanish bayonet, family Asparagaceae) is recognized for its purplish red color reflecting its anthocyanin content, which has a powerful antioxidant activity. This study aimed to investigate yucca (YA) fruit extract's protective effect on Parkinson's disease (PD). In vitro study, the anti-inflammatory activity of yucca fruit extracts was explored by measuring tumor necrosis factor receptor 2 (TNF-R2) and nuclear factor kappa B (NF-KB) to choose the most effective extract. Afterward, a detailed in vivo investigation of the protective effect of the most active extract on rotenone-induced PD was performed on male albino Wister rats. First, the safety of the extract in two different doses (50 and 100 mg/kg in 0.9% saline orally) was confirmed by a toxicological study. The rats were divided into four groups: 1) normal control (NC); 2) rotenone group; and third and fourth groups received 50 and 100 mg/kg yucca extract, respectively. The neurobehavioral and locomotor activities of the rats were tested by rotarod, open field, and forced swim tests. Striatal dopamine, renal and liver functions, and oxidative stress markers were assessed. Western blot analysis of brain tissue samples was performed for p-AMPK, Wnt3a, and ß-catenin. Histopathological examination of striatal tissue samples was performed by light and electron microscopy (EM). The metabolites of the active extract were characterized using high-resolution LC-MS/MS, and the results showed the prevalence of anthocyanins, saponins, phenolics, and choline. Biochemical and histopathological tests revealed a dose-dependent improvement with oral Yucca extract. The current study suggests a possible neuroprotective effect of the acidified 50% ethanol extract (YA-C) of the edible Yucca fruit, making it a promising therapeutic target for PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Yucca , Male , Animals , Rats , Anthocyanins , Chromatography, Liquid , Fruit , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Rotenone/toxicity , Tandem Mass Spectrometry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL