Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Biochem Mol Biol ; 12(2): 259-268, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38317819

ABSTRACT

Background: The number of erythromycin-resistant Streptococcus pneumoniae has significantly increased around the world. The present study aimed to determine the serotype distribution and molecular epidemiology of the erythromycin-resistant Streptococcus pneumoniae (ERSP) isolated from patients with invasive disease. Methods: A total of 44 Streptococcus pneumoniae isolates were tested for susceptibility to several antimicrobial agents. Additionally, the polymerase chain reaction (PCR) was applied to evaluate ERSP isolates in terms of the presence of erythromycin resistance genes (e.g., ermB and mefA). The isolates were serotyped using the sequential multiplex-PCR method, and molecular epidemiology was assessed through the multilocus sequence typing (MLST) analysis. Results: The results represented multidrug resistance (MDR) in approximately half of the pneumococcal isolates. Among 22 ERSP isolates, 20 (90.9%) and 12 (56%) ones contained ermB and mefA, respectively. Further, 14 (31.8%), 3 (22.7%), and 19A (18.1%) were the common serotypes among the isolates. No significant correlation was observed between serotypes and erythromycin resistance genes. Furthermore, the MLST results revealed 18 different sequence types (STs), the top ones of which were ST3130 (3 isolates) and ST166 (3 isolates). Population genetic analysis disclosed that CC63 (32%), CC156 (18%), and CC320 (18%) were identified as the predominant clonal complexes. Conclusions: The ERSP isolates exhibited high genetic diversity. The large frequency of MDR isolates suggests the emergence of high resistant strains, as well as the need to implement vaccination in the immunization schedule of Iran. These accumulating evidences indicate that 13-valent pneumococcal conjugate vaccines provided higher serotype coverage in the ERSP isolates.

2.
J Clin Lab Anal ; 36(8): e24566, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35748026

ABSTRACT

BACKGROUND: Given the significant role of penicillin-nonsusceptible Streptococcus pneumoniae in inducing severe infectious diseases, identifying serotypes and genotypes that can mediate antimicrobial resistance has become a pillar of treatment strategies. This study aims to determine the correlation between the minimum inhibitory concentration of antimicrobial agents and amino acid mutations in penicillin-binding proteins. Moreover, molecular serotyping and multiple-locus variable number tandem repeat analysis typing were first-ever performed to characterize the invasive penicillin-nonsusceptible S. pneumoniae isolates in Iran. METHODS: Of 149 isolates, antimicrobial susceptibility tests were performed against penicillin, ceftriaxone, and cefotaxime by the MIC Test Strip, and sequence analysis of the pbp genes was performed through PCR-sequencing method. All penicillin-nonsusceptible S. pneumoniae isolates were serotyped and genotyped by sequential multiplex PCR and multiple-locus variable-number tandem repeat analysis, respectively. RESULTS: Among pneumococcal isolates, 53 isolates were classified as penicillin-nonsusceptible S. pneumoniae, of which 38 (71.7%) and 15 (28.3%) were resistant and intermediate to penicillin, respectively. Furthermore, ceftriaxone- and cefotaxime-nonsusceptible pneumococci constituted 33 (62.2%) and 29 cases (54.7%), respectively. Of note, there were 8 and 41 different serotypes and multiple-locus variable-number tandem repeat analysis types, respectively. CONCLUSIONS: Due to the increasing resistance to antimicrobial agents, the most efficient approach to preventing pneumococcal infection mortality as vaccine-preventable diseases is focusing on wide-spectrum vaccination. Based on our findings, the 13-valent pneumococcal conjugate vaccine could considerably reduce the incidence of invasive pneumococcal diseases due to the high rate of serotype coverage.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Heptavalent Pneumococcal Conjugate Vaccine , Humans , Microbial Sensitivity Tests , Penicillins/pharmacology , Penicillins/therapeutic use , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Serotyping , Streptococcus pneumoniae/genetics
3.
Infect Drug Resist ; 13: 333-340, 2020.
Article in English | MEDLINE | ID: mdl-32099424

ABSTRACT

INTRODUCTION: Encapsulated Streptococcus pneumoniae strains cause high morbidity and mortality, mainly in countries with no pneumococcal conjugate vaccines (PCVs) immunization program. This study investigated the epidemiological changes of S. pneumoniae isolates including serotype distribution and antimicrobial susceptibility in Tehran, Iran. METHODS: A total of 80 S. pneumoniae samples were collected from patients admitted to Shariati hospital over two periods. Half of the isolates were collected from February to September 2017 and the other half from July 2018 to March 2019. The antimicrobial susceptibility testing and PCV-13 serotype coverage of S. pneumoniae isolates were evaluated among patients with invasive and non-invasive infections. RESULTS: The most common serotypes were 23F (17.5%), 14 (16.3%), 3 (16.3%) 19F (12.5%), and 19A (12.5%) in the present study. The vaccine coverage rates of PCV-7, PCV-10 and PCV-13 were 52.6%, 52.6%, and 83.7%, respectively. S. pneumoniae isolates with the serotype of the PCV-13 showed an increasing trend during the study. Nearly half of the S. pneumoniae strains were MDR, while MDR serotype 19A increased (40%) during the study periods. A small minority of isolates (16%) belonged to non-vaccine serotypes, 65% of which were assigned to MDR. In general, the frequency of penicillin resistant and MDR strains were estimated about 27.5% and 51%, respectively. An increase was observed in resistance to erythromycin and co-trimoxazole. CONCLUSION: The results showed that majority of the circulating serotypes in our study are related to PCV-13 serotypes. The use of conjugate vaccine in the immunization program and surveillance of antimicrobial resistance can be effective in reducing the pneumococcal clinical burden.

SELECTION OF CITATIONS
SEARCH DETAIL
...