Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(42): 37546-37554, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312434

ABSTRACT

Methanol contamination of alcoholic drinks can lead to severe health problems for human beings including poisoning, headache, blindness, and even death. Therefore, having access to a simple and inexpensive way for monitoring beverages is vital. Herein, a portable, low cost, and easy to use sensor is fabricated based on the exploitation of chiral nematic liquid crystals (CLCs) and a textile grid for detection of methanol in two distinct alcoholic beverages: red wine and vodka. The working principle of the sensor relies on the reorientation of the liquid crystal molecules upon exposure to the contaminated alcoholic beverages with different concentrations of methanol (0, 2, 4, and 6 wt %) and the changes in the observed colorful textures of the CLCs as well as the intensity of the output light. The proposed sensor is label free and rapid.

2.
Opt Lett ; 45(8): 2355-2358, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32287232

ABSTRACT

Photothermal effect in plasmonic nanostructures (thermoplasmonic), as a nanoscale heater, has been widely used in biomedical technology and optoelectronic devices. However, the big challenge in this effect is the quantitative characterization of the delivered heat to the surrounding environment. In this work, a plasmonic metasurface (as a nanoheater), and a Fabry-Perot (FP) cavity including liquid crystal (as a thermometer element) are integrated. The metasurface is manufactured through a bottom-up deposition method and has a near perfect absorption that causes an efficient temperature rising in the photothermal experiment under a low intensity of irradiation ($0.25\; {\rm W}/{{\rm cm}^2}$0.25W/cm2). Generated heat from the metasurface dissipates to the liquid crystal (LC) layer and makes a spectral shift of FP modes. More than 50°C temperature elevation with accuracy of 1.3°C are measured based on the consistency of anisotropic thermo-tropic data of the LC and a spectral shift of FP modes. The calculated figure of merit (FoM) of the constructed device, which indicates the temperature sensitivity, is 22. The FoM is four times more than other reported thermometry devices with broad spectral width. The device can be also used as an all-optical device to control the plasmonic resonance spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...