Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36015619

ABSTRACT

In this work, a polypyrrole-polyethyleneimine (PPy-PEI) nano-adsorbent was successfully synthesized for the removal of methylene blue (MB) from an aqueous solution. Synthetic dyes are among the most prevalent environmental contaminants. A new conducting polymer-based adsorbent called (PPy-PEI) was successfully produced using ammonium persulfate as an oxidant. The PEI hyper-branched polymer with terminal amino groups was added to the PPy adsorbent to provide more effective chelating sites for dyes. An efficient dye removal from an aqueous solution was demonstrated using a batch equilibrium technique that included a polyethyleneimine nano-adsorbent (PPy-PEI). The best adsorption parameters were measured at a 0.35 g dosage of adsorbent at a pH of 6.2 and a contact period of 40 min at room temperature. The produced PPy-PEI nano-adsorbent has an average particle size of 25-60 nm and a BET surface area of 17 m2/g. The results revealed that PPy-PEI nano-composite was synthesized, and adsorption was accomplished in the minimum amount of time. The maximum monolayer power, qmax, for MB was calculated using the isothermal adsorption data, which matched the Langmuir isotherm model, and the kinetic adsorption data, which more closely fitted the Langmuir pseudo-second-order kinetic model. The Langmuir model was used to calculate the maximum monolayer capacity, or qmax, for MB, which was found to be 183.3 mg g-1. The as-prepared PPy-PEI nano-adsorbent totally removes the cationic dyes from the aqueous solution.

2.
Turk J Chem ; 46(6): 1841-1852, 2022.
Article in English | MEDLINE | ID: mdl-37621345

ABSTRACT

In this study poly (4-nitrophenylazo-3-aminopyridine - formaldehyde) (PNAAP-F) and poly (4-nitroarylazo-3-chloro-6-hydroxypyridine - formaldehyde) (NAACHP-F) were synthesized via diazotization, coupling and polycondensation reactions. The structural properties of the as-synthesized dyes were acquired using Fourier-transform infrared spectroscopy (FTIR) and UV-visible absorption maxima and their color, yield, melting point, solubility, and viscosity were determined via standard methods. UV-visible and FTIR results show successful formation of the polymeric dyes due to shift of wavelength of maximum absorption (λmax) (440-490 nm, 480-540 nm) and new absorption peak at around (2780-2995 cm-1) for methylene bridge respectively. The dyes were found to be of good yield (monomeric: 73.3%-87.2 %, polymeric: 53.8%-76.6 %), low melting point (monomeric: 112.6-121.2, and 136.0-137.0 °C, while polymeric: 134.0-144.5, and 149.4-154.7 °C), soluble in some solvents. The dyeing activity was carried out and assessed on nylon and polyester fabrics using the standard methods. The dyeing process was carried out via high temperature and carrier dyeing methods. The dyeing properties of the synthesized dyes were compared with those of commercial disperse dyes (terasil brilliant violet and terasil scarlet, brown). The dyeings of nylon and polyester had a very attractive hue and the color ranges from yellow and deep yellow shades with very good to excellent fastness to light, washing, hot pressing, and rubbing.

3.
R Soc Open Sci ; 6(11): 190869, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31827835

ABSTRACT

Hyperbranched polyisoprene was prepared by anionic copolymerization under high vacuum condition. Size exclusion chromatography was used to characterize the molecular weight and branching nature of these polymers. The characterization by differential scanning calorimetry and melt rheology indicated lower Tg and complex viscosity in the branched polymers as compared with the linear polymer. Degradation kinetics of these polymers was explored using thermogravimetric analysis via non-isothermal techniques. The polymers were heated under nitrogen from ambient temperature to 600°C using heating rates from 2 to 15°C min-1. Three kinetics methods namely Friedman, Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose were used to evaluate the dependence of activation energy (Ea ) on conversion (α). The hyperbranched polyisoprene decomposed via multistep mechanism as manifested by the nonlinear relationship between α and Ea while the linear polymer exhibited a decline in Ea at higher conversions. The average Ea values range from 258 to 330 kJ mol-1 for the linear, and from 260 to 320 kJ mol-1 for the branched polymers. The thermal degradation of the polymers studied involved one-dimensional diffusion mechanism as determined by Coats-Redfern method. This study may help in understanding the effect of branching on the rheological and decomposition kinetics of polyisoprene.

4.
RSC Adv ; 8(21): 11684-11692, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-35542803

ABSTRACT

This work aimed at developing a synthetic route towards highly branched poly(isoprene) from commercially available raw materials, in good yield and devoid of microgelation, i.e., to prepare a completely soluble polymer via the versatile technique anionic polymerisation. The polymerisations were conducted under high vacuum conditions using sec-butyllithium as initiator at 50 °C in toluene. Toluene served both as a solvent and as a chain-transfer agent. The polar modifier used was tetramethylethylenediamine (TMEDA), and a commercial mixture of divinylbenzene (DVB) was employed as the branching agent for the "living" poly(isoprenyl)lithium anions. The nature of the reaction was studied on the TMEDA/Li ratio as well as the DVB/Li ratio. The obtained branched polymers were characterised by triple detection size exclusion chromatography (SEC), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC) and melt rheology. Broad molecular weight distributions have been obtained for the highly branched polymer products. 1H NMR spectroscopy reveals the dominance of 3,4-polyisoprene microstructure. It was found that the complex viscosities and dynamic moduli of the branched samples were much lower compared to their linear counterparts. The results conform with earlier findings by the "Strathclyde team" for radical polymerisation systems. This methodology has the potential of providing soluble branched vinyl polymers at low cost using the readily available raw materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...