Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Clin Pathol ; 17: 19, 2017.
Article in English | MEDLINE | ID: mdl-28860943

ABSTRACT

BACKGROUND: Mosquito coil (MC) emits insecticide upon burning which provides limited protection against lethal mosquito borne diseases. However, apart from killing the insect, toxicities associated with the inhalation of these insecticides poses severe health hazards. However, the use of MC is increasing day by day in third world countries in particular but, yet to receive enough attention of both policy maker and general public. The current study was aimed to assess the MC smoke induced damage of pulmonary and hepatic tissues along with observing the alterations of several blood biochemical parameters in mice model. METHODS: A total of twenty four Swiss albino mice were allowed to inhale the smoke of allethrin based MC at different duration per day for 120 days. By the end of treatment period, blood sample was drawn from each mouse and blood biochemical parameters including alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen(BUN), serum total protein, cholesterol, low density lipoprotein (LDL) and triglyceride (TG) were analyzed. Intact lung and liver were collected for histological analysis using standard protocol. RESULTS: Biochemical study indicates elevated activity of two hepatic enzymes: ALT (89%), AST (85%), in comparison with the respective control. Increased level of some parameters of lipid profile including cholesterol (36%), LDL (48%) and triglyceride (30%) in smoke inhaled mice is the new finding of this study. On the contrary, the activity of serum total protein and BUN was decreased by 20% and 24%, respectively in inhaled mice. Pulmonary tissue of treated mice shows severe forms of emphysema and hyperplasia, especially in the peripheral region of lung, which is the hallmark of chronic obstructive pulmonary disease (COPD). Histological study of hepatic tissue shows apoptosis mediated damage of hepatocytes along with severe form of necrosis. Infiltration of Inflammatory cells was also observed in both of the organs. CONCLUSION: Results from the present studies suggest that chronic exposure of allethrin based MC is responsible factor for severe health complications such as COPD due to the alterations of the key biochemical parameters of blood and histo-organization of lung and liver.

2.
Water Res ; 47(2): 747-57, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23218247

ABSTRACT

The goal of this study was to quantify and demonstrate the dynamic effects of hydraulic retention time (HRT), organic carbon and various components of extracellular polymeric substances (EPS) produced by microorganisms on the performance of submersed hollow-fiber microfiltration (MF) membrane in a hybrid powdered activated carbon (PAC)-MF membrane bioreactor (MBR). The reactors were operated continuously for 45 days to treat surface (river) water before and after pretreatment using a biofiltration unit. The real-time levels of organic carbon and the major components of EPS including five different carbohydrates (D(+) glucose and D(+) mannose, D(+) galactose, N-acetyl-D-galactosamine and D-galactose, oligosaccharides and L(-) fucose), proteins, and polysaccharides were quantified in the influent water, foulants, and in the bulk phases of different reactors. The presence of PAC extended the filtration cycle and enhanced the organic carbon adsorption and removal more than two fold. Biological filtration improved the filtrate quality and decreased membrane fouling. However, HRT influenced the length of the filtration cycle and had less effect on organic carbon and EPS component removal and/or biodegradation. The abundance of carbohydrates in the foulants on MF surfaces was more than 40 times higher than in the bulk phase, which demonstrates that the accumulation of carbohydrates on membrane surfaces contributed to the increase in transmembrane pressure significantly and PAC was not a potential adsorbent of carbohydrates. The abundance of N-acetyl-d-galactosamine and d-galactose was the highest in the foulants on membranes receiving biofilter-treated river water. Most of the biological fouling compounds were produced inside the reactors due to biodegradation. PAC inside the reactor enhanced the biodegradation of polysaccharides up to 97% and that of proteins by more than 95%. This real-time extensive and novel study demonstrates that the PAC-MF hybrid MBR is a sustainable technology for treating river water.


Subject(s)
Biofouling , Bioreactors , Fresh Water/chemistry , Membranes, Artificial , Micropore Filters/microbiology , Polymers/chemistry , Water Purification/instrumentation , Adsorption , Biofouling/prevention & control , Fresh Water/microbiology , Humic Substances/analysis , Humic Substances/microbiology , Hydrology/methods , Hydrolysis , Japan , Kinetics , Materials Testing , Polymers/metabolism , Polysaccharides/analysis , Polysaccharides/chemistry , Polysaccharides/metabolism , Pressure , Proteins/analysis , Proteins/chemistry , Proteins/metabolism , Rivers , Surface Properties , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...