Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Science ; 377(6603): 265-266, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857598

ABSTRACT

An inorganic halide perovskite solar cell architecture promises multiyear stability.

2.
ACS Energy Lett ; 7(4): 1246-1254, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35558900

ABSTRACT

Having captivated the research community with simple fabrication processes and staggering device efficiencies, perovskite-based optoelectronics are already on the way to commercialization. However, one potential obstacle to this commercialization is the almost exclusive use of toxic, highly coordinating, high boiling point solvents to make perovskite precursor inks. Herein, we demonstrate that nonpolar organic solvents, such as toluene, can be combined with butylamine to form an effective solvent for alkylammonium-based perovskites. Beyond providing broader solvent choice, our finding opens the possibility of blending perovskite inks with a wide range of previously incompatible materials, such as organic molecules, polymers, nanocrystals, and structure-directing agents. As a demonstration, using this solvent, we blend the perovskite ink with 6,6-phenyl-C-61-butyric acid methyl ester and show improved perovskite crystallization and device efficiencies. This processing route may enable a myriad of new possibilities for tuning the active layers in efficient photovoltaics, light-emitting diodes, and other semiconductor devices.

3.
Sci Adv ; 7(18)2021 Apr.
Article in English | MEDLINE | ID: mdl-33910894

ABSTRACT

Long-lived photon-stimulated conductance changes in solid-state materials can enable optical memory and brain-inspired neuromorphic information processing. It remains challenging to realize optical switching with low-energy consumption, and new mechanisms and design principles giving rise to persistent photoconductivity (PPC) can help overcome an important technological hurdle. Here, we demonstrate versatile heterojunctions between metal-halide perovskite nanocrystals and semiconducting single-walled carbon nanotubes that enable room-temperature, long-lived (thousands of seconds), writable, and erasable PPC. Optical switching and basic neuromorphic functions can be stimulated at low operating voltages with femto- to pico-joule energies per spiking event, and detailed analysis demonstrates that PPC in this nanoscale interface arises from field-assisted control of ion migration within the nanocrystal array. Contactless optical measurements also suggest these systems as potential candidates for photonic synapses that are stimulated and read in the optical domain. The tunability of PPC shown here holds promise for neuromorphic computing and other technologies that use optical memory.

4.
ACS Appl Mater Interfaces ; 13(14): 17085-17092, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33787195

ABSTRACT

The limited long-term stability of metal halide perovskite-based solar cells is a bottleneck in their drive toward widespread commercial adaptation. The organic hole-transport materials (HTMs) have been implicated in the degradation, and metal oxide layers are proposed as alternatives. One of the most prominent metal oxide HTM in organic photovoltaics is MoO3. However, the use of MoO3 as HTM in metal halide perovskite-based devices causes a severe solar cell deterioration. Thus, the formation of the MoO3/CH3NH3PbI3-xClx (MAPbI3-xClx) heterojunction is systematically studied by synchrotron-based hard X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Upon MoO3 deposition, significant chemical interaction is induced at the MoO3/MAPbI3-xClx interface: substoichiometric molybdenum oxide is present, and the perovskite decomposes in the proximity of the interface, leading to accumulation of PbI2 on the MoO3 cover layer. Furthermore, we find evidence for the formation of new compounds such as PbMoO4, PbN2O2, and PbO as a result of the MAPbI3-xClx decomposition and suggest chemical reaction pathways to describe the underlying mechanism. These findings suggest that the (direct) MoO3/MAPbI3-xClx interface may be inherently unstable. It provides an explanation for the low power conversion efficiencies of metal halide perovskite solar cells that use MoO3 as a hole-transport material and in which there is a direct contact between MoO3 and perovskite.

5.
ACS Nano ; 14(7): 8816-8825, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32644773

ABSTRACT

Colloidal metal halide perovskite nanocrystals (NCs) with chiral ligands are outstanding candidates as a circularly polarized luminescence (CPL) light source due to many advantages such as high photoluminescence quantum efficiency, large spin-orbit coupling, and extensive tunability via composition and choice of organic ligands. However, achieving pronounced and controllable polarized light emission remains challenging. Here, we develop strategies to achieve high CPL responses from colloidal formamidinium lead bromide (FAPbBr3) NCs at room temperature using chiral surface ligands. First, we show that replacing a portion of typical ligands (oleylamine) with short chiral ligands ((R)-2-octylamine) during FAPbBr3 NC synthesis results in small and monodisperse NCs that yield high CPL with average luminescence dissymmetry g-factor, glum = 6.8 × 10-2. To the best of our knowledge, this is the highest among reported perovskite materials at room temperature to date and represents around 10-fold improvement over the previously reported colloidal CsPbClxBryI3-x-y NCs. In order to incorporate NCs into any optoelectronic or spintronic application, the NCs necessitate purification, which removes a substantial amount of the chiral ligands and extinguishes the CPL signals. To circumvent this issue, we also developed a postsynthetic ligand treatment using a different chiral ligand, (R-/S-)methylbenzylammonium bromide, which also induces a CPL with an average glum = ±1.18 × 10-2. This postsynthetic method is also amenable for long-range charge transport since methylbenzylammonium is quite compact in relation to other surface ligands. Our demonstrations of high CPL and glum from both as-synthesized and purified perovskite NCs at room temperature suggest a route to demonstrate colloidal NC-based spintronics.

6.
Nat Commun ; 10(1): 4498, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582749

ABSTRACT

Developing multijunction perovskite solar cells (PSCs) is an attractive route to boost PSC efficiencies to above the single-junction Shockley-Queisser limit. However, commonly used tin-based narrow-bandgap perovskites have shorter carrier diffusion lengths and lower absorption coefficient than lead-based perovskites, limiting the efficiency of perovskite-perovskite tandem solar cells. In this work, we discover that the charge collection efficiency in tin-based PSCs is limited by a short diffusion length of electrons. Adding 0.03 molar percent of cadmium ions into tin-perovskite precursors reduce the background free hole concentration and electron trap density, yielding a long electron diffusion length of 2.72 ± 0.15 µm. It increases the optimized thickness of narrow-bandgap perovskite films to 1000 nm, yielding exceptional stabilized efficiencies of 20.2 and 22.7% for single junction narrow-bandgap PSCs and monolithic perovskite-perovskite tandem cells, respectively. This work provides a promising method to enhance the optoelectronic properties of narrow-bandgap perovskites and unleash the potential of perovskite-perovskite tandem solar cells.

7.
Adv Mater ; 31(27): e1902250, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31074911

ABSTRACT

Doping of semiconductors enables fine control over the excess charge carriers, and thus the overall electronic properties, crucial to many technologies. Controlled doping in lead-halide perovskite semiconductors has thus far proven to be difficult. However, lower dimensional perovskites such as nanocrystals, with their high surface-area-to-volume ratio, are particularly well-suited for doping via ground-state molecular charge transfer. Here, the tunability of the electronic properties of perovskite nanocrystal arrays is detailed using physically adsorbed molecular dopants. Incorporation of the dopant molecules into electronically coupled CsPbI3 nanocrystal arrays is confirmed via infrared and photoelectron spectroscopies. Untreated CsPbI3 nanocrystal films are found to be slightly p-type with increasing conductivity achieved by incorporating the electron-accepting dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 TCNQ) and decreasing conductivity for the electron-donating dopant benzyl viologen. Time-resolved spectroscopic measurements reveal the time scales of Auger-mediated recombination in the presence of excess electrons or holes. Microwave conductance and field-effect transistor measurements demonstrate that both the local and long-range hole mobility are improved by F4 TCNQ doping of the nanocrystal arrays. The improved hole mobility in photoexcited p-type arrays leads to a pronounced enhancement in phototransistors.

8.
ACS Appl Mater Interfaces ; 11(1): 1185-1191, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30556995

ABSTRACT

Carbon nanotube (CNT) solubilization via non-covalent wrapping of conjugated semiconducting polymers is a common technique used to produce stable dispersions for depositing CNTs from solution. Here, we report the use of a non-conjugated insulating polymer, ethylene vinyl acetate (EVA), to disperse multi- and single-walled CNTs (MWCNT and SWCNT) in organic solvents. We demonstrate that despite the insulating nature of the EVA, we can produce semitransparent films with conductivities of up to 34 S/cm. We show, using photoluminescence spectroscopy, that the EVA strongly binds to individual CNTs, thus making them soluble, preventing aggregation, and facilitating the deposition of high-quality films. To prove the good electronic properties of this composite, we have fabricated perovskite solar cells using EVA/SWCNTs and EVA/MWCNTs as selective hole contact, obtaining power conversion efficiencies of up to 17.1%, demonstrating that the insulating polymer does not prevent the charge transfer from the active material to the CNTs.

10.
J Phys Chem Lett ; 9(8): 1852-1858, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29569928

ABSTRACT

In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L3 and the Pb M5 edges of the methylammonium lead iodide (MAPbI3) hybrid inorganic-organic perovskite and its binary phase PbI2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

11.
ACS Appl Mater Interfaces ; 8(9): 5981-9, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26859777

ABSTRACT

Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

12.
ACS Nano ; 9(9): 9380-93, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26247197

ABSTRACT

Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.

13.
Nano Lett ; 14(10): 5561-8, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25226226

ABSTRACT

Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research. Power conversion efficiencies have experienced an unprecedented increase to reported values exceeding 19% within just four years. With the focus mainly on efficiency, the aspect of stability has so far not been thoroughly addressed. In this paper, we identify thermal stability as a fundamental weak point of perovskite solar cells, and demonstrate an elegant approach to mitigating thermal degradation by replacing the organic hole transport material with polymer-functionalized single-walled carbon nanotubes (SWNTs) embedded in an insulating polymer matrix. With this composite structure, we achieve JV scanned power-conversion efficiencies of up to 15.3% with an average efficiency of 10 ± 2%. Moreover, we observe strong retardation in thermal degradation as compared to cells employing state-of-the-art organic hole-transporting materials. In addition, the resistance to water ingress is remarkably enhanced. These are critical developments for achieving long-term stability of high-efficiency perovskite solar cells.

14.
J Phys Chem Lett ; 5(23): 4207-12, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-26278955

ABSTRACT

Here, we report the use of polymer-wrapped carbon nanotubes as a means to enhance charge extraction through undoped spiro-OMeTAD. With this approach a good solar cell performance is achieved without the implementation of conventional doping methods. We demonstrate that a stratified two-layer architecture of sequentially deposited layers of carbon nanotubes and spiro-OMeTAD, outperforms a conventional blend of the hole-conductor and the carbon nanotubes. We also provide insights into the mechanism of the rapid hole extraction observed in the two-layer approach.

15.
Adv Mater ; 25(31): 4365-71, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-24137628

ABSTRACT

We describe two methods in which we manipulate the binding of multiple conjugated polymers to single-walled carbon nanotubes (SWNTs) to produce new and novel nanostructures. One method fi rst utilizes the selective binding of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) to a narrow distribution of semiconducting SWNTs and then uses a polymer exchange to transfer this purity to other nanotube-polymer combinations, using technologically useful polymers such as poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluoreneco -benzothiadiazole) (F8BT) as fi rst examples. The other method involves controlling the competitive binding of P3HT and F8BT to SWNTs to produce coaxial nanostructures consisting of both polymers simultaneously bound in ordered layers. We show that these two simple solution-processing techniques can be carried out sequentially to afford new dual-polymer nanostructures comprised of a semiconducting SWNT of a single chirality. This allows the favorable properties of both polymers and purified semiconducting SWNTs to be implemented into potentially highly efficient organic photovoltaic devices.

16.
Angew Chem Int Ed Engl ; 52(29): 7372-408, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23765842

ABSTRACT

Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...