Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 283: 195-201, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31128689

ABSTRACT

Methionine and threonine are two essential amino acids whose low levels limit the nutritional quality of seeds. The current objective was to define factors that regulate and might increase their levels in seeds. Feeding experiments carried out on receptacles of developing tobacco (Nicotiana tabacum) capsules showed that 1 mM of S-methylmethionine increased the level of methionine to contents similar to 2.5 mM of homoserine, an intermediate metabolite of the aspartate family of amino acids. The latter also increased the level of threonine. Based on these findings, we generated tobacco seeds that expressed a combination of bacterial feedback-insensitive aspartate kinase (bAK), which was previously reported to have a high level of threonine/methionine, and feedback-insensitive cystathionine γ-synthase (CGS), the regulatory enzyme of the methionine biosynthesis pathway. Plants expressing this latter gene previously showed having higher levels of methionine. The results of total amino acids analysis showed that the level of threonine was highest in the bAK line, which has moderate levels of methionine and lysine, while the highest level of methionine was found in seeds expressing both heterologous genes. The results suggest that the level of threonine in tobacco seeds is limited by the substrate, while that of methionine is limited also by the activity of CGS.


Subject(s)
Carbon-Oxygen Lyases/metabolism , Methionine/metabolism , Nicotiana/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Threonine/metabolism , Amino Acids/metabolism , Homoserine/metabolism , Metabolic Networks and Pathways , Plants, Genetically Modified , Seeds/enzymology , Nicotiana/enzymology
2.
Mol Biol Evol ; 20(9): 1513-20, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12832650

ABSTRACT

To gain insight into the evolution of the methionine biosynthesis pathway, in vivo complementation tests were performed. The substrate specificity of three enzymes that intrinsically use different homoserine-esterified substrates and have different sulfur assimilation pathways was examined: two cystathionine gamma-synthases (the Escherichia coli enzyme that naturally utilizes O-succinylhomoserine [OSH]) and the Arabidopsis thaliana enzyme that naturally exploits O-phosphohomoserine [OPH]. Both of these act through the transsulfuration pathway. The third enzyme investigated was O-acetylhomoserine (OAH) sulfhydrylase of Leptospira meyeri, representing the enzyme that utilizes OAH and operates through the direct sulfhydrylation pathway. All the three enzymes were able to utilize OSH and OAH as substrates, with different degrees of efficiency, but only the plant enzyme was able to utilize OPH as a substrate. In addition to their inherent activity in the transsulfuration pathway, the two cystathionine gamma-synthases were also capable of acting in the direct sulfhydrylation pathway. Based on the phylogenic tree and the results of the complementation tests, we suggest that the ancestral gene was able to act as OAH or OSH sulfhydrylase. In some bacteria and plants, this ancient enzyme most probably evolved into a cystathionine gamma-synthase, thereby maintaining the ability to utilize various homoserine-esterified substrates, as well as various sulfur sources, and thus keeping the multisubstrate specificity of its ancestor. In some organisms, this ancestral gene probably underwent a duplication event, which resulted in a cystathionine gamma-synthase and a separate OAH or OSH sulfhydrylase. This led to the development of two parallel pathways of methionine biosynthesis, transsulfuration and direct sulfhydrylation, in these organisms. Although both pathways exist in several organisms, most seem to favor a single specific pathway for methionine biosynthesis in vivo.


Subject(s)
Carbon-Oxygen Lyases/metabolism , Evolution, Molecular , Homoserine/analogs & derivatives , Methionine/biosynthesis , Multienzyme Complexes , Saccharomyces cerevisiae Proteins , Sulfhydryl Compounds/metabolism , Carbon-Oxygen Lyases/chemistry , Carbon-Oxygen Lyases/genetics , Cysteine Synthase , Escherichia coli/enzymology , Escherichia coli/genetics , Genetic Complementation Test , Homoserine/metabolism , Leptospira/enzymology , Leptospira/genetics , Substrate Specificity
3.
Protein Sci ; 7(5): 1156-63, 1998 May.
Article in English | MEDLINE | ID: mdl-9836874

ABSTRACT

A comparison of the three-dimensional structures of the closely related mesophilic Clostridium beijerinckii alcohol dehydrogenase (CBADH) and the hyperthermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) suggested that extra proline residues in TBADH located in strategically important positions might contribute to the extreme thermal stability of TBADH. We used site-directed mutagenesis to replace eight complementary residue positions in CBADH, one residue at a time, with proline. All eight single-proline mutants and a double-proline mutant of CBADH were enzymatically active. The critical sites for increasing thermostability parameters in CBADH were Leu-316 and Ser-24, and to a lesser degree, Ala-347. Substituting proline for His-222, Leu-275, and Thr-149, however, reduced thermal stability parameters. Our results show that the thermal stability of the mesophilic CBADH can be moderately enhanced by substituting proline at strategic positions analogous to nonconserved prolines in the homologous thermophilic TBADH. The proline residues that appear to be crucial for the increased thermal stability of CBADH are located at a beta-turn and a terminating external loop in the polypeptide chain. Positioning proline at the N-caps of alpha-helices in CBADH led to adverse effects on thermostability, whereas single-proline mutations in other positions in the polypeptide had varying effects on thermal parameters. The finding presented here support the idea that at least two of the eight extra prolines in TBADH contribute to its thermal stability.


Subject(s)
Alcohol Dehydrogenase/metabolism , Bacteria, Anaerobic/enzymology , Clostridium/enzymology , Gram-Positive Asporogenous Rods, Irregular/enzymology , Proline/metabolism , Alcohol Dehydrogenase/chemistry , Amino Acid Sequence , Amino Acid Substitution , Enzyme Stability , Molecular Sequence Data , Sequence Homology, Amino Acid
4.
J Biol Chem ; 270(49): 29594-600, 1995 Dec 08.
Article in English | MEDLINE | ID: mdl-7494003

ABSTRACT

A stromal protein, designated restrictin-P, that specifically kills plasma-like cells was purified to homogeneity and shown to be identical with activin A. The specificity to plasma-like cells stemmed from the ability of restrictin-P/activin A to competitively antagonize the proliferation-inducing effects of interleukin (IL) 6 and IL-11. Restrictin-P further interfered with the IL-6-induced secretion of acute phase proteins by HepG2 human hepatoma cells and with the IL-6-mediated differentiation of M1 myeloblasts. A competition binding assay indicated that restrictin-P did not interfere with the binding of IL-6 to its receptor on plasma-like cells, suggesting that it may act by intervening in the signal transduction pathway of the growth factor. Indeed, concomitant addition of restrictin-P and IL-6 to cytokine-deprived B9 hybridoma cells was followed by sustained overexpression of junB gene until cell death occurred, while IL-6 alone caused a transient increase only. This altered response to IL-6 stimulation was accompanied by a moderate increase in STAT protein activation. Thus, in this study, we identified the plasmacytoma growth inhibitor, restrictin-P, as being activin A of stromal origin. It is shown that activin A is an antagonist of IL-6-induced functions and that it modifies the IL-6 signaling pattern.


Subject(s)
Glycoproteins/pharmacology , Growth Inhibitors/pharmacology , Inhibins/pharmacology , Interleukin-11/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Activins , Amino Acid Sequence , Animals , Cell Division/drug effects , Cell Line , DNA-Binding Proteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins , Interleukin-6/metabolism , Mice , Molecular Sequence Data , STAT3 Transcription Factor , Stromal Cells/chemistry , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...