Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 179(4): 1525-1536, 2019 04.
Article in English | MEDLINE | ID: mdl-30700540

ABSTRACT

In eukaryotes, the regulated transport of mRNAs from the nucleus to the cytosol through nuclear pore complexes represents an important step in the expression of protein-coding genes. In plants, the mechanism of nucleocytosolic mRNA transport and the factors involved are poorly understood. The Arabidopsis (Arabidopsis thaliana) genome encodes two likely orthologs of UAP56-interacting factor, which acts as mRNA export factor in mammalian cells. In yeast and plant cells, both proteins interact directly with the mRNA export-related RNA helicase UAP56 and the interaction was mediated by an N-terminal UAP56-binding motif. Accordingly, the two proteins were termed UAP56-INTERACTING EXPORT FACTOR1 and 2 (UIEF1/2). Despite lacking a known RNA-binding motif, recombinant UIEF1 interacted with RNA, and the C-terminal part of UIEF1 mainly contributed to the RNA interaction. Mutation of UIEF1, UIEF2, or both in the double-mutant 2xuief caused modest growth defects. A cross between the 2xuief and 4xaly (defective in the four ALY1-4 mRNA export factors) mutants produced the sextuple mutant 4xaly 2xuief, which displayed more severe growth impairment than the 4xaly plants. Developmental defects including delayed bolting and reduced seed set were observed in the 4xaly but not the 2xuief plants. Analysis of the cellular distribution of polyadenylated mRNAs revealed more pronounced nuclear mRNA accumulation in 4xaly 2xuief than in 2xuief and 4xaly cells. In conclusion, the results indicate that UIEF1 and UIEF2 act as mRNA export factors in plants and that they cooperate with ALY1-ALY4 to mediate efficient nucleocytosolic mRNA transport.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , DEAD-box RNA Helicases/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genome, Plant , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...