Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 10(446)2018 06 20.
Article in English | MEDLINE | ID: mdl-29925637

ABSTRACT

Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed (n = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, linc-ADAL, was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that linc-ADAL interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , RNA, Long Noncoding/metabolism , Adipocytes/cytology , Cell Differentiation , Cell Nucleus/metabolism , Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , Humans , Lipids/biosynthesis , Lipogenesis , PPAR gamma/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription, Genetic
2.
Arterioscler Thromb Vasc Biol ; 37(11): 2156-2160, 2017 11.
Article in English | MEDLINE | ID: mdl-28882870

ABSTRACT

OBJECTIVE: To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. APPROACH AND RESULTS: We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA (LIPA-/-) had barely detectable LAL enzymatic activity. Control and LIPA-/- IPSDM were loaded with [3H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [3H]-cholesterol to apolipoprotein A-I was abolished in LIPA-/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [3H]-cholesterol-labeled AcLDL, [3H]-cholesterol efflux was, however, not different between control and LIPA-/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA-/- IPSDM. In nonlipid loaded state, LIPA-/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA-/- IPSDM. LIPA-/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B, IL6, and CCL5. CONCLUSIONS: LIPA-/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human macrophages.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Induced Pluripotent Stem Cells/enzymology , Lysosomes/enzymology , Macrophages/enzymology , Sterol Esterase/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Apolipoprotein B-100/metabolism , Cell Differentiation , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Cholesterol Esters/metabolism , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , Genotype , HEK293 Cells , Hep G2 Cells , Humans , Hydrolysis , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipoproteins, LDL/metabolism , Phenotype , Proteolysis , Sterol Esterase/genetics , Time Factors , Transfection
3.
Plant Cell ; 28(9): 2197-2211, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27495811

ABSTRACT

LHP1-INTERACTING FACTOR2 (LIF2), a heterogeneous nuclear ribonucleoprotein involved in Arabidopsis thaliana cell fate and stress responses, interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a Polycomb Repressive Complex1 subunit. To investigate LIF2-LHP1 functional interplay, we mapped their genome-wide distributions in wild-type, lif2, and lhp1 backgrounds, under standard and stress conditions. Interestingly, LHP1-targeted regions form local clusters, suggesting an underlying functional organization of the plant genome. Regions targeted by both LIF2 and LHP1 were enriched in stress-responsive genes, the H2A.Z histone variant, and antagonistic histone marks. We identified specific motifs within the targeted regions, including a G-box-like motif, a GAGA motif, and a telo-box. LIF2 and LHP1 can operate both antagonistically and synergistically. In response to methyl jasmonate treatment, LIF2 was rapidly recruited to chromatin, where it mediated transcriptional gene activation. Thus, LIF2 and LHP1 participate in transcriptional switches in stress-response pathways.

4.
Plant Cell ; 28(2): 406-25, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26764378

ABSTRACT

RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics , Ribonuclease III/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , DNA Methylation , Gene Silencing , Genes, Reporter , Genetic Loci/genetics , Plant Roots/genetics , Plant Roots/physiology , RNA, Double-Stranded/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , RNA, Small Interfering/metabolism , Ribonuclease III/genetics
5.
Nucleic Acids Res ; 43(17): 8464-75, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26209135

ABSTRACT

Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS.


Subject(s)
RNA Interference , RNA, Antisense/metabolism , Transgenes , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Argonaute Proteins/genetics , Mutation , RNA Stability , RNA, Antisense/biosynthesis , RNA, Double-Stranded/metabolism , RNA, Small Interfering/biosynthesis , RNA-Dependent RNA Polymerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...