Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35745661

ABSTRACT

Background: Ergothioneine (ERGO) is a unique antioxidant and a rare amino acid available in fungi and various bacteria but not in higher plants or animals. Substantial research data indicate that ERGO is a physiological antioxidant cytoprotectant. Different from other antioxidants that need to breach the blood-brain barrier to enter the brain parenchyma, a specialized transporter called OCTN1 has been identified for transporting ERGO to the brain. Purpose: To assess whether consumption of ERGO can prevent the progress of Alzheimer's disease (AD) on young (4-month-old) 5XFAD mice. Methods and materials: Three cohorts of mice were tested in this study, including ERGO-treated 5XFAD, non-treated 5XFAD, and WT mice. After the therapy, the animals went through various behavioral experiments to assess cognition. Then, mice were scanned with PET imaging to evaluate the biomarkers associated with AD using [11C]PIB, [11C]ERGO, and [18F]FDG radioligands. At the end of imaging, the animals went through cardiac perfusion, and the brains were isolated for immunohistology. Results: Young (4-month-old) 5XFAD mice did not show a cognitive deficit, and thus, we observed modest improvement in the treated counterparts. In contrast, the response to therapy was clearly detected at the molecular level. Treating 5XFAD mice with ERGO resulted in reduced amyloid plaques, oxidative stress, and rescued glucose metabolism. Conclusions: Consumption of high amounts of ERGO benefits the brain. ERGO has the potential to prevent AD. This work also demonstrates the power of imaging technology to assess response during therapy.

2.
Anal Chem ; 88(19): 9780-9788, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27573922

ABSTRACT

Quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) approaches have historically suffered from poor accuracy and precision mainly due to the nonuniform distribution of matrix and analyte across the target surface, matrix interferences, and ionization suppression. Tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity as well as improve signal-to-noise ratios by eliminating interferences from chemical noise, alleviating some concerns about dynamic range. However, conventional MALDI TOF/TOF modalities typically only scan for a single MS/MS event per laser shot, and multiplex assays require sequential analyses. We describe here new methodology that allows for multiple TOF/TOF fragmentation events to be performed in a single laser shot. This technology allows the reference of analyte intensity to that of the internal standard in each laser shot, even when the analyte and internal standard are quite disparate in m/z, thereby improving quantification while maintaining chemical specificity and duty cycle. In the quantitative analysis of the drug enalapril in pooled human plasma with ramipril as an internal standard, a greater than 4-fold improvement in relative standard deviation (<10%) was observed as well as improved coefficients of determination (R2) and accuracy (>85% quality controls). Using this approach we have also performed simultaneous quantitative analysis of three drugs (promethazine, enalapril, and verapamil) using deuterated analogues of these drugs as internal standards.


Subject(s)
Antihypertensive Agents/analysis , Enalapril/analysis , Lasers , Promethazine/analysis , Verapamil/analysis , Humans , Molecular Structure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...