Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 108(1): 29-39, 2021 10.
Article in English | MEDLINE | ID: mdl-34252235

ABSTRACT

In gene-trap screening of plant genomes, promoterless reporter constructs are often expressed without trapping of annotated gene promoters. The molecular basis of this phenomenon, which has been interpreted as the trapping of cryptic promoters, is poorly understood. Here, we found that cryptic promoter activation occurs by at least two different mechanisms using Arabidopsis gene-trap lines in which a firefly luciferase (LUC) open reading frame (ORF) without an apparent promoter sequence was expressed from intergenic regions: one mechanism is 'cryptic promoter capturing', in which the LUC ORF captured pre-existing promoter-like chromatin marked by H3K4me3 and H2A.Z, and the other is 'promoter de novo origination', in which the promoter chromatin was newly formed near the 5' end of the inserted LUC ORF. The latter finding raises a question as to how the inserted LUC ORF sequence is involved in this phenomenon. To examine this, we performed a model experiment with chimeric LUC genes in transgenic plants. Using Arabidopsis psaH1 promoter-LUC constructs, we found that the functional core promoter region, where transcription start sites (TSSs) occur, cannot simply be determined by the upstream nor core promoter sequences; rather, its positioning proximal to the inserted LUC ORF sequence was more critical. This result suggests that the insertion of the coding sequence alters the local distribution of TSSs in the plant genome. The possible impact of the two types of cryptic promoter activation mechanisms on plant genome evolution and endosymbiotic gene transfer is discussed.


Subject(s)
Arabidopsis/genetics , Chromatin Assembly and Disassembly/genetics , Genome, Plant/genetics , Promoter Regions, Genetic/genetics , Chromatin/genetics , Open Reading Frames/genetics , Plants, Genetically Modified , Transcription Initiation Site
2.
Am J Transl Res ; 6(2): 169-78, 2014.
Article in English | MEDLINE | ID: mdl-24489997

ABSTRACT

The main determinant of glioblastoma (GBM) resistance to temozolomide (TMZ) is thought to be O(6)-methylguanine-DNA methyltransferase (MGMT), which is a DNA-repair enzyme that removes alkyl groups from the O(6)-position of guanine. Previously, we reported that a MGMT-siRNA/cationic liposome complex exerted a clear synergistic antitumor effect in combination with TMZ. Translation to a clinical setting might be desirable for reinforcing the efficacy of TMZ therapy for GBM. In this study, we aim to evaluate the safety of MGMT-siRNA/cationic liposome complexes and determine whether the convection-enhanced delivery of these complexes is suitable for clinical use by undertaking preclinical testing in laboratory animals. No significant adverse events were observed in rats receiving infusions of MGMT-siRNA/cationic liposome complex directly into the brain with or without TMZ administration. A pig which received the complex administered by CED also showed no evidence of neurological dysfunction or histological abnormalities. However, the complex did not appear to achieve effective distribution by CED in either the rat or the porcine brain tissue. Considering these results together, we concluded that insufficient distribution of cationic liposomes was achieved for tumor treatment by CED.

3.
Biochem Biophys Res Commun ; 430(2): 482-7, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23237799

ABSTRACT

Legumain (EC 3.4.22.34) is an asparaginyl endopeptidase. Strong legumain activity was observed in the mouse kidney, and legumain was highly expressed in tumors. We previously reported that bovine kidney annexin A2 was co-purified with legumain and that legumain cleaved the N-terminal region of annexin A2 at an Asn residue in vitro. In this study, to determine whether annexin A2 is cleaved by legumain in vivo, siRNA-lipoplex targeting mouse legumain was injected into mouse tail veins. Mouse kidneys were then isolated and the effect of knockdown of legumain expression on annexin A2 cleavage was examined. The results showed that both legumain mRNA and protein expression levels were decreased in the siRNA-treated mouse kidneys and that legumain activity toward a synthetic substrate, Z-Ala-Ala-Asn-MCA, was decreased by about 40% in the kidney but not in the liver or spleen. Furthermore, cleavage of annexin A2 at the N-terminal region was decreased in the mouse kidney that had been treated with the legumain siRNA-lipoplex. These results suggest that legumain siRNA was delivered to the kidney by using LipoTrust and that the reduced legumain expression inhibited legumain-induced degradation of annexin A2 in vivo.


Subject(s)
Annexin A2/metabolism , Cysteine Endopeptidases/genetics , Gene Knockdown Techniques/methods , Kidney/enzymology , RNA, Small Interfering/genetics , Animals , Asparagine/metabolism , Cattle , Cysteine Endopeptidases/metabolism , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Proteolysis , Transfection/methods
4.
Plant Cell Physiol ; 52(2): 333-43, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21149298

ABSTRACT

Plant organelles are not only the recipients of signals from the nucleus, but also elicit signals to regulate nuclear genes; the latter process is called retrograde regulation. We previously reported a novel mitochondrial retrograde regulation in Chlamydomonas reinhardtii; nuclear photosynthesis genes are regulated in response to mitochondrial respiratory electron transport (RET). However, the physiological roles of this retrograde regulation are not yet fully understood. In this study, we performed a genome-wide transcriptome analysis of this alga to reveal what kinds of genes are responsive to this RET signal, using Chlamydomonas macroarrays containing 10,368 expressed sequence tag clones. From the analysis, we identified 147 inducible and 35 repressive genes based on a couple of criteria: induction/repression by activated respiration caused by exogenously added acetate, and the cancellations of these responses by treatment with antimycin A, an inhibitor of RET. Interestingly, genes for respiration, photosynthesis, glycolysis/gluconeogenesis, protein biosynthesis, cell wall biogenesis and flagella were significantly induced by RET-derived signals. From these findings, we discuss the physiological role of mitochondrial retrograde signaling in this unicellular alga, in terms of the coordination of cell proliferation with energy-producing metabolism.


Subject(s)
Chlamydomonas reinhardtii/genetics , Energy Metabolism/genetics , Gene Expression Profiling , Mitochondria/metabolism , Chlamydomonas reinhardtii/metabolism , Expressed Sequence Tags , Genes, Mitochondrial , Genes, Plant , Mitochondria/genetics , Oligonucleotide Array Sequence Analysis , RNA, Plant/genetics
5.
Biol Pharm Bull ; 30(10): 1844-50, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17917248

ABSTRACT

We determined the influence of siRNA (short interfering RNA) for expression of plasmid DNA (pDNA), when mismatched siRNA and pDNA encoding beta-galactosidase (beta-gal) were transfected into HeLa cells by the cotransfection method in which they were simultaneously added to the cells. Cationic liposomes (Lipofectamine2000) were used as a gene transfection reagent. The knockdown effect on beta-gal was observed even when mismatched siRNA was used, and the effect depended on the amount of added mismatched siRNA. But, there was not a distinct difference of introduction of pDNA into cells between using mismatched siRNA and without using it. We considered that the cotransfection method should be avoided when we confirm RNAi efficiency. The reliable evaluation method for siRNA delivery in vitro was thus established by using NFAT reporter HeLa stable cell line or CHO (pMAM-luc) cell line that had DNA encoding luciferase. The following experimental conditions for each cell line were optimized: cell numbers seeded, total incubation times, concentrations of added inducers, and incubation times after addition of inducers. Transfection performance was compared for six commercially available reagents by this method. No commercially available transfection reagent, however, could reduce luciferase activity by less than one tenth without causing cellular cytotoxicity. Development of novel reagents providing higher transfection effects without cytotoxicity is needed.


Subject(s)
Luciferases/genetics , RNA, Small Interfering/administration & dosage , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Carriers , Drug Delivery Systems , Genes, Reporter/genetics , HeLa Cells , Humans , Liposomes , Microscopy, Confocal , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...