Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 423(Pt B): 127186, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34844339

ABSTRACT

We evaluated mercury (Hg) behavior in a full-scale sewage sludge torrefaction plant with a capacity of 150 wet tons/day, which operates under a nitrogen atmosphere at a temperature range of 250-350 °C. Thermodynamic calculations and monitoring results show that elemental Hg (Hg0) was the dominant species in both the pyrolysis gas during the torrefaction stage and in the flue gas from downstream air pollution control devices. A wet scrubber (WS) effectively removed oxidized Hg from the flue gas and moved Hg to wastewater, and an electrostatic precipitator (ESP) removed significant particulate-bound Hg but showed a limited capacity for overall Hg removal. Hg bound to total suspended solids had a much higher concentration than that of dissolved Hg in wastewater. Total suspended solid removal from wastewater is therefore recommended to reduce Hg discharge. Existing air pollution control devices, which consist of a cyclone, WS, and ESP, are not sufficient for Hg removal due to the poor Hg0 removal performance of the WS and ESP; a further Hg0 removal unit is necessary. A commercial packed tower with sorbent polymer catalyst composite material was effective in removing Hg (83.3%) during sludge torrefaction.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Coal/analysis , Mercury/analysis , Polymers , Sewage
2.
Chemosphere ; 238: 124682, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31524619

ABSTRACT

Plant growth-promoting bacteria (PGPB) are considered a promising tool to improve biomass production and water remediation by the aquatic plant, duckweed; however, no effective methodology is available to utilize PGPB in large hydroponic systems. In this study, we proposed a two-step cultivation process, which comprised of a "colonization step" and a "mass cultivation step," and examined its efficacy in both bucket-scale and flask-scale cultivation experiments. We showed that in the outdoor bucket-scale experiments using three kinds of environmental water, plants cultured through the two-step cultivation method with the PGPB strain, Acinetobacter calcoaceticus P23, yielded 1.9 to 2.3 times more biomass than the control (without PGPB inoculation). The greater nitrogen and phosphorus removals compared to control were also attained, indicating that this strategy is useful for accelerating nutrient removal by duckweed. Flask-scale experiments using non-sterile pond water revealed that inoculation of strain P23 altered duckweed surface microbial community structures, and the beneficial effects of the inoculated strain P23 could last for 5-10 d. The loss of the duckweed growth-promoting effect was noticeable when the colonization of strain P23 decreased in the plant. These observations suggest that the stable colonization of the plant with PGPB is the key for maintaining the accelerated duckweed growth and nutrient removal in this cultivation method. Overall, our results suggest the possibility of an improved duckweed production using a two-step cultivation process with PGPB.


Subject(s)
Acinetobacter calcoaceticus/metabolism , Araceae/growth & development , Araceae/microbiology , Hydroponics/methods , Microbiota/physiology , Biomass , Fresh Water , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Plant Development , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...