Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pattern Recognit Lett ; 135: 409-417, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32704196

ABSTRACT

Diabetic Retinopathy (DR) may result in various degrees of vision loss and even blindness if not diagnosed in a timely manner. Therefore, having an annual eye exam helps early detection to prevent vision loss in earlier stages, especially for diabetic patients. Recent technological advances made smartphone-based retinal imaging systems available on the market to perform small-sized, low-powered, and affordable DR screening in diverse environments. However, the accuracy of DR detection depends on the field of view and image quality. Since smartphone-based retinal imaging systems have much more compact designs than a traditional fundus camera, captured images are likely to be the low quality with a smaller field of view. Our motivation in this paper is to develop an automatic DR detection model for smartphone-based retinal images using the deep learning approach with the ResNet50 network. This study first utilized the well-known AlexNet, GoogLeNet, and ResNet50 architectures, using the transfer learning approach. Second, these frameworks were retrained with retina images from several datasets including EyePACS, Messidor, IDRiD, and Messidor-2 to investigate the effect of using images from the single, cross, and multiple datasets. Third, the proposed ResNet50 model is applied to smartphone-based synthetic images to explore the DR detection accuracy of smartphone-based retinal imaging systems. Based on the vision-threatening diabetic retinopathy detection results, the proposed approach achieved a high classification accuracy of 98.6%, with a 98.2% sensitivity and a 99.1% specificity while its AUC was 0.9978 on the independent test dataset. As the main contributions, DR detection accuracy was improved using the deep transfer learning approach for the ResNet50 network with publicly available datasets and the effect of the field of view in smartphone-based retinal imaging was studied. Although a smaller number of images were used in the training set compared with the existing studies, considerably acceptable high accuracies for validation and testing data were obtained.

2.
BMC Bioinformatics ; 21(Suppl 4): 259, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32631221

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR), the most common cause of vision loss, is caused by damage to the small blood vessels in the retina. If untreated, it may result in varying degrees of vision loss and even blindness. Since DR is a silent disease that may cause no symptoms or only mild vision problems, annual eye exams are crucial for early detection to improve chances of effective treatment where fundus cameras are used to capture retinal image. However, fundus cameras are too big and heavy to be transported easily and too costly to be purchased by every health clinic, so fundus cameras are an inconvenient tool for widespread screening. Recent technological developments have enabled to use of smartphones in designing small-sized, low-power, and affordable retinal imaging systems to perform DR screening and automated DR detection using image processing methods. In this paper, we investigate the smartphone-based portable retinal imaging systems available on the market and compare their image quality and the automatic DR detection accuracy using a deep learning framework. RESULTS: Based on the results, iNview retinal imaging system has the largest field of view and better image quality compared with iExaminer, D-Eye, and Peek Retina systems. The overall classification accuracy of smartphone-based systems are sorted as 61%, 62%, 69%, and 75% for iExaminer, D-Eye, Peek Retina, and iNview images, respectively. We observed that the network DR detection performance decreases as the field of view of the smartphone-based retinal systems get smaller where iNview is the largest and iExaminer is the smallest. CONCLUSIONS: The smartphone-based retina imaging systems can be used as an alternative to the direct ophthalmoscope. However, the field of view of the smartphone-based retina imaging systems plays an important role in determining the automatic DR detection accuracy.


Subject(s)
Deep Learning/standards , Diabetic Retinopathy/diagnosis , Retina/diagnostic imaging , Smartphone/standards , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...