Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 149: 111481, 2023 03.
Article in English | MEDLINE | ID: mdl-36787674

ABSTRACT

In the early avian embryo, the developing heart forms when bilateral fields of cardiac progenitor cells, which reside in the lateral plate mesoderm, move toward the embryonic midline, and fuse above the anterior intestinal portal (AIP) to form a straight, muscle-wrapped tube. During this process, the precardiac mesoderm remains in close contact with the underlying endoderm. Previous work has shown that the endoderm around the AIP actively contracts to pull the cardiac progenitors toward the midline. The morphogenetic deformations associated with this endodermal convergence, however, remain unclear, as do the signaling pathways that might regulate this process. Here, we fluorescently labeled populations of endodermal cells in early chicken embryos and tracked their motion during heart tube formation to compute time-varying strains along the anterior endoderm. We then determined how the computed endodermal strain distributions are affected by the pharmacological inhibition of either myosin II or fibroblast growth factor (FGF) signaling. Our data indicate that a mediolateral gradient in endodermal shortening is present around the AIP, as well as substantial convergence and extension movements both anterior and lateral to the AIP. These active endodermal deformations are disrupted if either actomyosin contractility or FGF signaling are inhibited pharmacologically. Taken together, these results demonstrate how active deformations along the anterior endoderm contribute to heart tube formation within the developing embryo.


Subject(s)
Chickens , Endoderm , Animals , Chick Embryo , Chickens/metabolism , Endoderm/metabolism , Heart , Morphogenesis , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology
2.
Biophys J ; 119(9): 1865-1877, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33080219

ABSTRACT

After surgery or traumatic injury, corneal wound healing can cause a scarring response that stiffens the tissue and impairs ocular function. This fibrosis is caused in part by the activation of corneal keratocytes from a native mechanically quiescent state to an activated myofibroblastic state. This transformation is tied to signaling downstream of transforming growth factor-ß1 (TGF-ß1). Here, to better understand how biochemical and biophysical cues interact to regulate keratocyte activation and contractility, we cultured primary rabbit corneal keratocytes on flexible substrata of varying stiffness in the presence (or absence) of TGF-ß1. Time-lapse fluorescence microscopy was used to assess changes in keratocyte morphology, as well as to quantify the dynamic traction stresses exerted by cells under different experimental conditions. In other experiments, keratocytes were fixed after 5 days of culture and stained for markers of both contractility and myofibroblastic activation. Treatment with TGF-ß1 elicited distinct phenotypes on substrata of different stiffnesses. Cells on soft (1 kPa) gels formed fewer stress fibers and retained a more dendritic morphology, indicative of a quiescent keratocyte phenotype. Keratocytes cultured on stiff (10 kPa) gels or collagen-coated glass coverslips, however, had broad morphologies, formed abundant stress fibers, exhibited greater levels of α-smooth muscle actin (α-SMA) expression, and exerted larger traction forces. Confocal images of phospho-myosin light chain (pMLC) immunofluorescence, moreover, revealed stiffness-dependent differences in the subcellular distribution of actomyosin contractility, with pMLC localized at the tips of thin cellular processes in mechanically quiescent cells. Importantly, keratocytes cultured in the absence of TGF-ß1 showed no stiffness-dependent differences in α-SMA immunofluorescence, suggesting that a stiff microenvironment alone is insufficient to induce myofibroblastic activation. Taken together, these data suggest that changes in ECM stiffness can modulate the morphology, cytoskeletal organization, and subcellular pattern of force generation in corneal keratocytes treated with TGF-ß1.


Subject(s)
Corneal Keratocytes , Transforming Growth Factor beta1 , Animals , Cells, Cultured , Cornea , Fibroblasts , Myofibroblasts , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...