Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(17): e92, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37602419

ABSTRACT

Stochastic simulation models have played an important role in efforts to understand the mechanistic basis of prokaryotic transcription and translation. Despite the fundamental linkage of these processes in bacterial cells, however, most simulation models have been limited to representations of either transcription or translation. In addition, the available simulation models typically either attempt to recapitulate data from single-molecule experiments without considering cellular-scale high-throughput sequencing data or, conversely, seek to reproduce cellular-scale data without paying close attention to many of the mechanistic details. To address these limitations, we here present spotter (Simulation of Prokaryotic Operon Transcription & Translation Elongation Reactions), a flexible, user-friendly simulation model that offers highly-detailed combined representations of prokaryotic transcription, translation, and DNA supercoiling. In incorporating nascent transcript and ribosomal profiling sequencing data, spotter provides a critical bridge between data collected in single-molecule experiments and data collected at the cellular scale. Importantly, in addition to rapidly generating output that can be aggregated for comparison with next-generation sequencing and proteomics data, spotter produces residue-level positional information that can be used to visualize individual simulation trajectories in detail. We anticipate that spotter will be a useful tool in exploring the interplay of processes that are crucially linked in prokaryotes.


Subject(s)
Nucleotides , Protein Biosynthesis , Computer Simulation , Prokaryotic Cells , Operon/genetics
2.
bioRxiv ; 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37131791

ABSTRACT

Stochastic simulation models have played an important role in efforts to understand the mechanistic basis of prokaryotic transcription and translation. Despite the fundamental linkage of these processes in bacterial cells, however, most simulation models have been limited to representations of either transcription or translation. In addition, the available simulation models typically either attempt to recapitulate data from single-molecule experiments without considering cellular-scale high-throughput sequencing data or, conversely, seek to reproduce cellular-scale data without paying close attention to many of the mechanistic details. To address these limitations, we here present spotter (Simulation of Prokaryotic Operon Transcription & Translation Elongation Reactions), a flexible, user-friendly simulation model that offers highly-detailed combined representations of prokaryotic transcription, translation, and DNA supercoiling. In incorporating nascent transcript and ribosomal profiling sequencing data, spotter provides a critical bridge between data collected in single-molecule experiments and data collected at the cellular scale. Importantly, in addition to rapidly generating output that can be aggregated for comparison with next-generation sequencing and proteomics data, spotter produces residue-level positional information that can be used to visualize individual simulation trajectories in detail. We anticipate that spotter will be a useful tool in exploring the interplay of processes that are crucially linked in prokaryotes.

3.
Nucleic Acids Res ; 45(13): 7541-7554, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28645155

ABSTRACT

We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of 'fractal globules,' and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome.


Subject(s)
Chromosomes, Bacterial/genetics , Escherichia coli/genetics , Genome, Bacterial , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/ultrastructure , Computer Simulation , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fractals , Models, Genetic , Models, Molecular , Nucleic Acid Conformation , Operon
4.
J Chem Theory Comput ; 13(4): 1812-1826, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28296391

ABSTRACT

There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparametrize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications-some previously reported by others and some that are new to this study-are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parametrization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields' descriptions of solute-solute interactions and further demonstrates that modifications to van der Waals parameters provide a simple route to optimizing agreement with experiment.


Subject(s)
Amino Acids/chemistry , Molecular Dynamics Simulation , Small Molecule Libraries/chemistry , Osmotic Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...