Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 7: 100822, 2020.
Article in English | MEDLINE | ID: mdl-32195139

ABSTRACT

Electrochemical energy devices, such as batteries and fuel cells, contain active electrode components that have highly porous, multiphase microstructures for improved performance. Predictive electrochemical models of solid oxide fuel cell (SOFC) electrode performance based on measured microstructures have been limited to small length scales, a small number of simulations, and/or relatively homogeneous microstructures. To overcome the difficulty in modeling electrochemical activity of inhomogeneous microstructures at considerable length scales, we have developed a high-throughput simulation application that operates on high-performance computing platforms. The open-source application, named Electrochemical Reactions in MIcrostructural NEtworks (ERMINE), is implemented within the MOOSE computational framework, and solves species transport coupled to both three-phase boundary and two-phase boundary electrochemical reactions. As the core component, this application is further incorporated into a high-throughput computational workflow. The main advantages of the workflow include:•Straightforward image-based volumetric meshing that conforms to complex, multi-phased microstructural features•Computation of local electrochemical fields in morphology-resolved microstructures at considerable length scales•Implementation on high performance computing platforms, leading to fast, high-throughput computations.

2.
Phys Chem Chem Phys ; 21(47): 26117-26122, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31748777

ABSTRACT

The performance of LaxSr1-xCo1-yFeyO3-δ perovskite systems in applications such as solid oxide fuel cells and catalysis is related to the proportion of substitution atoms. Using a density functional theory method, we investigate the doping effect on the electronic, optical, and thermodynamic properties of LaxSr1-xCo1-yFeyO3-δ (x/y = 0.25, 0.5, 0.75). Our results show that La doping introduces an empty state and pushes the Fermi level upwards. The doping Fe derived states locate away from the Fermi level as compared with Co states. From the results of optical absorption, the peak at 200-300 nm is enhanced and experiences a blue-shift with increasing La concentration. The corresponding peak at 400-700 nm also shows a blue-shift induced by both La and Fe doping, and it could be enhanced by Fe doping while being suppressed by La doping. And the peak above 1500 nm is enhanced by the cooperation of La and Fe doping. From thermodynamic calculations via an Ellingham diagram, it is found that the parent SrCoO3 is the most favorable composition for releasing O2, with both La and Fe doping hampering the reduction reaction. Therefore, the optical and thermodynamic properties of LaxSr1-xCo1-yFeyO3-δ could be adjusted by special doping values.

3.
Phys Chem Chem Phys ; 21(36): 20454-20462, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31502599

ABSTRACT

ABO3-δ (A = La, Sr, B = Fe, Co) perovskites are useful in a wide range of applications, including their recent exploration for application in high-temperature optical oxygen sensing for energy conversion devices such as solid oxide fuel cells. To elucidate the dependence of functional properties and oxygen vacancy formation on defect chemistry and composition, first principles calculations are presented. The obtained results show that oxygen vacancy (VO) formation energies are in the order of LaFeO3 > LaCoO3 > SrFeO3 > SrCoO3. Furthermore, the influence of VO on the electronic and optical properties is investigated for the high temperature stable phases (T = 1100 K). For the LaFeO3 insulator, the VO donated electrons are all localized on the down-spin d3z2-r2 orbitals of the nearest Fe ions. These defect states located in the band gap induce a drop in the energy onset of absorption as pristine bulk → V2+O → V1+O → V0O, and especially, an extra absorption peak appears between 0.5 and 1.5 eV due to V0O and V1+O formation. In the rest of the crystals that expressed a metallic feature, the VO donated electrons partially localize on the down-spin d3z2-r2 orbital and partially delocalize through the lattice, by which the absorption peaks (0.5-2.0 eV for LaCoO3, 0.0-0.5 eV for SrFeO3 and SrCoO3) from the electronic excitation near the Fermi level are enhanced. A high VO concentration of oxygen divacancy in SrFeO3 and SrCoO3 could enhance charge localization on down-spin d3z2-r2 orbitals, resulting in a remarkable increase of optical absorption at 1.5-3.0 eV.

4.
ACS Appl Mater Interfaces ; 10(49): 42552-42563, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30430821

ABSTRACT

The demand for real-time sensors in harsh environments at elevated temperature is significant and increasing. In this manuscript, the chemical and temperature sensing using the optical response through the practical fiber platform is demonstrated, and principle component analysis is coupled with targeted experimental film characterization to understand the fundamental sensing layer properties, which dominate measured gas sensing responses in complex gas mixtures. More specifically, tin-doped indium oxide-decorated sensors fabricated with the sol-gel method show stable and stepwise transmission responses varying over a wide range of H2 concentration (5-100%) at 250-350 °C as well as responses to CH4 and CO to a lesser extent. Measured responses are attributed to modifications to the surface plasmon resonance absorption in the near-infrared range and are dominated by the highest concentrations of the most-reducing analyte based upon systematic mixed gas stream experiments. Principal component analysis is utilized for this type of sensor to improve the quantitative and qualitative understanding of responses, clearly identifying that the dominant principle component (PC #1) accounts for ∼78% of total data variance. Correlations between PC #1 and the experimentally derived free carrier concentration confirm that this material property plays the strongest role on the ITO gas sensing mechanism, while correlations between the free carrier mobility and the second most important principle component (PC #2) suggest that this quantity may play a significant but secondary role. As such, the results presented here clarify the relationship between generalized principle components and fundamental sensing materials properties thereby suggesting the pathway toward improved multicomponent gas speciation through sensor layer engineering. The work presented represents a significant step toward the ultimate objective of optical waveguide sensors integrated with multivariate data analytics for multiparameter monitoring with a single sensor element.

5.
Phys Chem Chem Phys ; 19(45): 30464-30472, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29114649

ABSTRACT

In the present study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La1-xSrx)yMnO3±Î´ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation on the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.

SELECTION OF CITATIONS
SEARCH DETAIL
...