Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 105(2): 293-301, 2020 02.
Article in English | MEDLINE | ID: mdl-31595565

ABSTRACT

NEW FINDINGS: What is the central question of this study? Acetazolamide and methazolamide both reduce hypoxic pulmonary vasoconstriction equally, but methazolamide does not impair skeletal muscle function. The effect of methazolamide on respiratory control in humans is not yet known. What is the main finding and its importance? Similar to acetazolamide after chronic oral administration, methazolamide causes a metabolic acidosis and shifts the ventilatory CO2 response curve leftwards without reducing O2 sensitivity. The change in ventilation over the change in log PO2 provides a more accurate measure of hypoxic sensitivity than the change in ventilation over the change in arterial oxyhaemoglobin saturation. ABSTRACT: Acetazolamide is used to prevent/treat acute mountain sickness and both central and obstructive sleep apnoea. Methazolamide, like acetazolamide, reduces hypoxic pulmonary vasoconstriction, but has fewer side-effects, including less impairment of skeletal muscle function. Given that the effects of methazolamide on respiratory control in humans are unknown, we compared the effects of oral methazolamide and acetazolamide on ventilatory control and determined the ventilation-log  PO2 relationship in humans. In a double-blind, placebo-controlled, randomized cross-over design, we studied the effects of acetazolamide (250 mg three times daily), methazolamide (100 mg twice daily) and placebo in 14 young male subjects who were exposed to 7 min of normoxic hypercapnia and to three levels of eucapnia and hypercapnic hypoxia. With placebo, methazolamide and acetazolamide, the CO2 sensitivities were 2.39 ± 1.29, 3.27 ± 1.82 and 2.62 ± 1.79 l min-1  mmHg-1 (n.s.) and estimated apnoeic thresholds 32 ± 3, 28 ± 3 and 26 ± 3 mmHg, respectively (P < 0.001, placebo versus methazolamide and acetazolamide). The relationship between ventilation ( V̇I ) and log  PO2 (using arterialized venous PO2 in hypoxia) was linear, and neither agent influenced the relationship between hypoxic sensitivity ( ΔV̇I/ΔlogPO2 ) and arterial [H+ ]. Using ΔV̇I/ΔlogPO2 rather than Δ V̇I /Δ arterial oxyhaemoglobin saturation enables a more accurate estimation of oxygenation and ventilatory control in metabolic acidosis/alkalosis when right- or leftward shifts of the oxyhaemoglobin saturation curve occur. Given that acetazolamide and methazolamide have similar effects on ventilatory control, methazolamide might be preferred for indications requiring the use of a carbonic anhydrase inhibitor, avoiding some of the negative side-effects of acetazolamide.


Subject(s)
Acetazolamide/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Methazolamide/pharmacology , Pulmonary Ventilation/drug effects , Pulmonary Ventilation/physiology , Respiration/drug effects , Adult , Cross-Over Studies , Double-Blind Method , Humans , Male , Young Adult
2.
J Appl Physiol (1985) ; 125(6): 1795-1803, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30236048

ABSTRACT

Acetazolamide (AZ), a carbonic anhydrase inhibitor used for preventing altitude illness attenuates hypoxic pulmonary vasoconstriction (HPV) while improving oxygenation. Methazolamide (MZ), an analog of acetazolamide, is more lipophilic, has a longer half-life, and activates a major antioxidant transcription factor. However, its influence on the hypoxic pulmonary response in humans is unknown. The aim of this study was to determine whether a clinically relevant dosing of MZ improves oxygenation, attenuates HPV, and augments plasma antioxidant capacity in men exposed to hypoxia compared with an established dosing of AZ known to suppress HPV. In this double-blind, placebo-controlled crossover trial, 11 participants were randomized to treatments with MZ (100 mg 2× daily) and AZ (250 mg 3× daily) for 2 days before 60 min of hypoxia (FIO2 ≈0.12). Pulmonary artery systolic pressure (PASP), alveolar ventilation (V̇A), blood gases, and markers of redox status were measured. Pulmonary vascular sensitivity to hypoxia was determined by indexing PASP to alveolar PO2. AZ caused greater metabolic acidosis than MZ, but the augmented V̇A and improved oxygenation with hypoxia were similar. The rise in PASP with hypoxia was lower with MZ (9.0 ± 0.9 mmHg) and AZ (8.0 ± 0.7 mmHg) vs. placebo (14.1 ± 1.3 mmHg, P < 0.05). Pulmonary vascular sensitivity to hypoxia (ΔPASP/ΔPAO2) was reduced equally by both drugs. Only AZ improved the nonenzymatic plasma antioxidant capacity. Although AZ had only plasma antioxidant properties, MZ led to similar improvements in oxygenation and reduction in HPV at a dose causing less metabolic acidosis than AZ in humans.NEW & NOTEWORTHY Both acetazolamide and methazolamide are effective in the prevention of acute mountain sickness by inducing an increase in ventilation and oxygenation. Acetazolamide attenuates hypoxic pulmonary vasoconstriction; however, it was previously unknown whether methazolamide has the same effect in humans. This study shows that a dosing of methazolamide causing less metabolic acidosis improves oxygenation while attenuating hypoxic pulmonary vasoconstriction and pulmonary vascular sensitivity to hypoxia. Acetazolamide improved plasma antioxidant capacity better than methazolamide.

3.
J Appl Physiol (1985) ; 121(2): 568-76, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27365283

ABSTRACT

Agitated saline contrast echocardiography is often used to determine blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA). We applied indicator dilution theory to time-acoustic intensity curves obtained from a bolus injection of hand-agitated saline contrast to acquire a quantitative index of contrast mass. Using this methodology and an in vitro model of the pulmonary circulation, the purpose of this study was to determine the effect of transit time and gas composition [air vs. sulphur hexafluoride (SF6)] on contrast conservation between two detection sites separated by a convoluted network of vessels. We hypothesized that the contrast lost between the detection sites would increase with transit times and be reduced by using contrast bubbles composed of SF6 Changing the flow and/or reducing the volume of the circulatory network manipulated transit time. Contrast conservation was measured as the ratio of outflow and inflow contrast masses. For air, 53.2 ± 3.4% (SE) of contrast was conserved at a transit time of 9.25 ± 0.02 s but dropped to 16.0 ± 1.0% at a transit time of 10.17 ± 0.06 s. Compared with air, SF6 contrast conservation was significantly greater (P < 0.05) with 114.3 ± 2.9% and 73.7 ± 3.3% of contrast conserved at a transit time of 10.39 ± 0.02 s and 13.46 ± 0.04 s, respectively. In summary, time-acoustic intensity curves can quantify agitated saline contrast, but loss of contrast due to bubble dissolution makes measuring Q̇IPAVA across varying transit time difficult. Agitated saline composed of SF6 is stabilized and may be a suitable alternative for Q̇IPAVA measurement.


Subject(s)
Arteriovenous Anastomosis/physiology , Blood Flow Velocity/physiology , Contrast Media/chemistry , Echocardiography/methods , Indicator Dilution Techniques , Pulmonary Circulation/physiology , Sodium Chloride/chemistry , Algorithms , Arteriovenous Anastomosis/diagnostic imaging , Artifacts , Drug Stability , Echocardiography/instrumentation , Humans , Image Interpretation, Computer-Assisted/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...