Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Trends Biotechnol ; 42(2): 141-143, 2024 02.
Article in English | MEDLINE | ID: mdl-37951780

ABSTRACT

As natural environments deteriorate, genetic improvements to agricultural animals will be required to ensure global food security. Improving livestock production by introducing asexual reproduction (AR) into mainstream animal husbandry can help meet the challenge, but its advantages must be accompanied by social, commercial, and governmental acceptance.


Subject(s)
Animal Husbandry , Livestock , Animals , Livestock/genetics , Environment , Reproduction, Asexual
2.
Sci Rep ; 13(1): 12716, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543633

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disorder that causes syndromes characterized by physiological dysfunction in many organs and tissues. Despite the recognizable morphological and behavioral deficits associated with MPS I, neither the underlying alterations in functional neural connectivity nor its restoration following gene therapy have been shown. By employing high-resolution resting-state fMRI (rs-fMRI), we found significant reductions in functional neural connectivity in the limbic areas of the brain that play key roles in learning and memory in MPS I mice, and that adeno-associated virus (AAV)-mediated gene therapy can reestablish most brain connectivity. Using logistic regression in MPS I and treated animals, we identified functional networks with the most alterations. The rs-fMRI and statistical methods should be translatable into clinical evaluation of humans with neurological disorders.


Subject(s)
Mucopolysaccharidosis I , Humans , Animals , Mice , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Brain/diagnostic imaging , Genetic Therapy/methods , Brain Mapping/methods , Magnetic Resonance Imaging
3.
Trends Biotechnol ; 40(4): 371-373, 2022 04.
Article in English | MEDLINE | ID: mdl-34836658

ABSTRACT

There is an urgent need to reform the regulation of transgenic and genome-edited food animals. Now is the time to simplify regulatory safety guidelines based on science before it is too late to have these animals in place to meet societal needs in coming decades.


Subject(s)
Food Safety , Genome , Animals , Animals, Genetically Modified
4.
Natl Sci Rev ; 8(8): nwab067, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34691713

ABSTRACT

Genetically modified food animals (GMFAs) are needed to address early the cumulative effects of livestock production on the environment, and to accommodate future food demands. In 2020 China and the USA, the world's two largest economies, embarked on regulatory reforms to boost the commercialization of such animals. However, gaining social acceptance of GMFAs for commercialization remains a global challenge. We propose a framework that focuses on social license for commercialization of GMFAs by defining four classes of improvement using precision genetics: (1) animals equivalent to natural variation to obtain the improved effect of cross-breeding (ENV); (2) animals with an inactivated gene that could occur via natural mutation (ENC-); (3) animals harboring a natural genetic sequence isolated from another species (ENC+); and (4) animals with synthetic sequences encoding novel genes (BNE). Our approach can guide regulators and the public to support orderly commercialization of GMFAs.

6.
Cell Transplant ; 28(9-10): 1091-1105, 2019.
Article in English | MEDLINE | ID: mdl-31426664

ABSTRACT

Blastocyst complementation combined with gene editing is an emerging approach in the field of regenerative medicine that could potentially solve the worldwide problem of organ shortages for transplantation. In theory, blastocyst complementation can generate fully functional human organs or tissues, grown within genetically engineered livestock animals. Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ development can open a niche for human stem cells to occupy, thus generating human tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung, and skeletal muscle, as well as cells of the immune and nervous systems. Within each of these organ systems, we identify and discuss (i) the common causes of organ failure; (ii) the current state of regenerative therapies; and (iii) the candidate genes to knockout and enable specific exogenous organ development via the use of blastocyst complementation. We also highlight some of the current barriers limiting the success of blastocyst complementation.


Subject(s)
Animals, Genetically Modified , Blastocyst/metabolism , Gene Expression Regulation, Developmental , Organ Transplantation , Organogenesis , Pluripotent Stem Cells , Animals , Animals, Genetically Modified/embryology , Animals, Genetically Modified/genetics , Humans
7.
Biomacromolecules ; 20(4): 1530-1544, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30919629

ABSTRACT

Genome editing therapies hold great promise for the cure of monogenic and other diseases; however, the application of nonviral gene delivery methods is limited by both a lack of fundamental knowledge of interactions of the gene-carrier in complex animals and biocompatibility. Herein, we characterize nonviral gene delivery vehicle formulations that are based on diblock polycations containing a hydrophilic and neutral glucose block chain extended with cationic secondary amines of three lengths, poly(methacrylamido glucopyranose- block-2-methylaminoethyl methacrylate) [P(MAG- b-MAEMt)-1, -2, -3]. These polymers were formulated with plasmid DNA to prepare polyelectrolyte complexes (polyplexes). In addition, two controls, P(EG- b-MAEMt) and P(MAEMt), were synthesized, formulated into polyplexes and the ex vivo hemocompatibility, or blood compatibility, and in vivo biodistribution of the formulations were compared to the glycopolymers. While both polymer structure and N/P (amine to phosphate) ratio were important factors affecting hemocompatibility, N/P ratio played a stronger role in determining polyplex biodistribution. P(EG- b-MAEMt) and P(MAEMt) lysed red blood cells at both high and low N/P formulations while P(MAG- b-MAEMt) did not significantly lyse cells at either formulation at short and medium polymer lengths. Conversely, P(MAG- b-MAEMt) did not affect coagulation at N/P = 5, but significantly delayed coagulation at N/P = 15. P(EG- b-MAEMt) and P(MAEMt) did not affect coagulation at either formulation. After polymer and pDNA cargo distribution was observed in vivo, P(EG- b-MAEMt) N/P = 5 and P(MAG- b-MAEMt) N/P = 5 both dissociated and deposited polymer in the liver, while pDNA cargo from P(MAG- b-MAEMt) N/P = 15 was found in the liver, lungs, and spleen. The contrast between P(MAG- b-MAEMt) at N/P = 5 and 15 demonstrates that polyplex stability in the blood can be improved with N/P ratio and potentially aid polyplex biodistribution through simply varying the formulation ratios.


Subject(s)
DNA , Gene Transfer Techniques , Materials Testing , Plasmids , Polyelectrolytes , Animals , DNA/chemistry , DNA/pharmacokinetics , DNA/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Methacrylates/pharmacology , Mice , Plasmids/chemistry , Plasmids/pharmacokinetics , Plasmids/pharmacology , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacokinetics , Polyelectrolytes/pharmacology , Tissue Distribution
8.
Hum Gene Ther ; 28(7): 551-564, 2017 07.
Article in English | MEDLINE | ID: mdl-28530135

ABSTRACT

The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and ß-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion. This study reports that immunosuppression of dogs with gadolinium chloride (GdCl3) prolonged the presence of cSEAP in the circulation up to 5.5 months after a single vector infusion. Transgene expression declined gradually but appeared to stabilize after about 2 months at approximately fourfold baseline level. Durability of transgenic protein expression in the plasma was inversely associated with transient increase of liver enzymes alanine transaminase and aspartate transaminase in response to the plasmid delivery procedure, which suggests a deleterious effect of hepatocellular toxicity on transgene expression. GdCl3 treatment was ineffective for repeat vector infusions. In parallel studies, dogs were infused with potentially therapeutic transposons. Activities of transgenic IDUA and GUSB in plasma peaked at 50-350% of wildtype, but in the absence of immunosuppression lasted only a few days. Transposition was detectable by excision assay only when the most efficient transposase, SB100X, was used. Dogs infused with transposons encoding canine clotting factor IX (cFIX) were treated with GdCl3 and showed expression profiles similar to those in cSEAP-infused dogs, with expression peaking at 40% wt (2 µg/mL). It is concluded that GdCl3 can support extended transgene expression after hydrodynamic introduction of SB transposons in dogs, but that alternative regimens will be required to achieve therapeutic levels of transgene products.


Subject(s)
DNA Transposable Elements/genetics , Gene Transfer Techniques , Genetic Therapy , Glucuronidase/genetics , Hemophilia A/therapy , Iduronidase/genetics , Liver/metabolism , Transposases/genetics , Animals , Dogs , Gadolinium/pharmacology , Gene Expression , Genes, Reporter , Immunomodulation , Male , Mice, Inbred C57BL , Transgenes
9.
Hum Gene Ther ; 28(7): 541-550, 2017 07.
Article in English | MEDLINE | ID: mdl-28447859

ABSTRACT

The Sleeping Beauty transposon system has been extensively tested for integration of reporter and therapeutic genes in vitro and in vivo in mice. Dogs were used as a large animal model for human therapy and minimally invasive infusion of DNA solutions. DNA solutions were delivered into the entire liver or the left side of the liver using balloon catheters for temporary occlusion of venous outflow. A peak intravascular pressure between 80 and 140 mmHg supported sufficient DNA delivery in dog liver for detection of secretable reporter proteins. Secretable reporters allowed monitoring of the time course of gene products detectable in the circulation postinfusion. Canine secreted alkaline phosphatase reporter protein levels were measured in plasma, with expression detectable for up to 6 weeks, while expression of canine erythropoietin was detectable for 7-10 days. All animals exhibited a transient increase in blood transaminases that normalized within 10 days; otherwise the treated animals were clinically normal. These results demonstrate the utility of a secreted reporter protein for real-time monitoring of gene expression in the liver in a large animal model but highlight the need for improved delivery in target tissues to support integration and long-term expression of Sleeping Beauty transposons.


Subject(s)
Catheters , Gene Expression , Gene Transfer Techniques , Hydrodynamics , Liver/metabolism , Transgenes , Transposases/genetics , Alkaline Phosphatase/metabolism , Animals , DNA/administration & dosage , Dogs , Erythropoietin/genetics , Genes, Reporter , Hepatic Veins/metabolism , Humans , Plasmids/administration & dosage , Transaminases/blood , Transposases/metabolism
12.
J Clin Invest ; 126(9): 3363-76, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27482888

ABSTRACT

BACKGROUND: T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS: T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS: SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS: CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION: Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING: National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.


Subject(s)
Antigens, CD19/metabolism , DNA Transposable Elements , Lymphoma, Non-Hodgkin/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , T-Lymphocytes/cytology , Adult , Antigen-Presenting Cells/immunology , Cytokines/metabolism , Disease-Free Survival , Female , Follow-Up Studies , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Male , Middle Aged , Patient Safety , Plasmids/metabolism , Receptors, Antigen, T-Cell/metabolism , Transplantation, Homologous , Treatment Outcome , Young Adult
13.
Front Genet ; 7: 78, 2016.
Article in English | MEDLINE | ID: mdl-27242889

ABSTRACT

Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications.

14.
Biomacromolecules ; 17(3): 830-40, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26854615

ABSTRACT

The liver is an ideal target for nucleic acid therapeutic applications (i.e., siRNA, gene therapy, and genome editing) due to its ability to secrete proteins into the blood. In this work, we present the first synthesis of a novel monomer derived from N-acetyl-d-galactosamine (GalNAc) and its polymerization as a facile route to create multivalent delivery vehicles with exceptional targeting efficiency to asialoglycoprotein receptors (ASGPRs) on liver hepatocytes. A series of cationic diblock GalNAc glycopolymers composed of a GalNAc-derived block of fixed length (n = 62) and cationic 2-aminoethylmethacrylamide (AEMA) blocks of varying lengths (n = 19, 33, and 80) have been synthesized and characterized. In addition, nontargeted control polymers consisting of either glucose or polyethylene glycol-derived neutral blocks with an AEMA cationic block were also created and examined. All polymeric vehicles were able to bind and encapsulate plasmids (pDNA) into polymer-pDNA complexes (polyplexes). The GalNAc-derived polyplexes were colloidally stable and maintained their size over a period of 4 h in reduced-serum cell culture media. The GalNAc-derived homopolymer effectively inhibited the uptake of Cy5-labeled asialofetuin (a natural ligand of ASGPRs) by cultured hepatocyte (HepG2) cells at lower concentrations (IC50 = 20 nM) than monomeric GalNAc (IC50 = 1 mM) and asialofetuin (IC50 = 1 µM), suggesting highly enhanced ASGPR binding due to multivalency. These polymers also showed cell type-specific gene expression in cultured cells, with higher protein expression in ASGPR-presenting HepG2 than HeLa cells, which lack the receptor. Biodistribution studies in mice show higher accumulation of pDNA and GalNAc-derived polymers in the liver compared with the glucose-derived nontargeted control. This study demonstrates the first facile synthesis of a multivalent GalNAc-derived block copolymer architecture that promotes enhanced delivery to liver and offers insights to improve targeted nanomedicines for a variety of applications.


Subject(s)
Acetylgalactosamine/chemistry , Drug Carriers/chemistry , Liver/metabolism , Plasmids/administration & dosage , Polyamines/chemistry , Animals , Asialoglycoprotein Receptor/genetics , Asialoglycoprotein Receptor/metabolism , DNA/administration & dosage , Drug Carriers/adverse effects , Drug Carriers/chemical synthesis , Ethylamines/chemistry , Genetic Therapy/methods , HeLa Cells , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/drug effects , Methacrylates/chemistry , Mice , Mice, Inbred C57BL , Polyelectrolytes
15.
ACS Biomater Sci Eng ; 2(1): 43-55, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26807438

ABSTRACT

The development and thorough characterization of nonviral delivery agents for nucleic acid and genome editing therapies are of high interest to the field of nanomedicine. Indeed, this vehicle class offers the ability to tune chemical architecture/biological activity and readily package nucleic acids of various sizes and morphologies for a variety of applications. Herein, we present the synthesis and characterization of a class of trehalose-based block copolycations designed to stabilize polyplex formulations for lyophilization and in vivo administration. A 6-methacrylamido-6-deoxy trehalose (MAT) monomer was synthesized from trehalose and polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization to yield pMAT43. The pMAT43 macro-chain transfer agent was then chain-extended with aminoethylmethacrylamide (AEMA) to yield three different pMAT-b-AEMA cationic-block copolymers, pMAT-b-AEMA-1 (21 AEMA repeats), -2 (44 AEMA repeats), and -3 (57 AEMA repeats). These polymers along with a series of controls were used to form polyplexes with plasmids encoding firefly luciferase behind a strong ubiquitous promoter. The trehalose-coated polyplexes were characterized in detail and found to be resistant to colloidal aggregation in culture media containing salt and serum. The trehalose-polyplexes also retained colloidal stability and promoted high gene expression following lyophilization and reconstitution. Cytotoxicity, cellular uptake, and transfection ability were assessed in vitro using both human glioblastoma (U87) and human liver carcinoma (HepG2) cell lines wherein pMAT-b-AEMA-2 was found to have the optimal combination of high gene expression and low toxicity. pMAT-b-AEMA-2 polyplexes were evaluated in mice via slow tail vein infusion. The vehicle displayed minimal toxicity and discouraged nonspecific internalization in the liver, kidney, spleen, and lungs as determined by quantitative polymerase chain reaction (qPCR) and fluorescence imaging experiments. Hydrodynamic infusion of the polyplexes, however, led to very specific localization of the polyplexes to the mouse liver and promoted excellent gene expression in vivo.

16.
Mol Genet Metab ; 114(2): 83-93, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25410058

ABSTRACT

Most lysosomal storage disorders affect the nervous system as well as other tissues and organs of the body. Previously, the complexities of these diseases, particularly in treating neurologic abnormalities, were too great to surmount. However, based on recent developments there are realistic expectations that effective therapies are coming soon. Gene therapy offers the possibility of affordable, comprehensive treatment associated with these diseases currently not provided by standards of care. With a focus on correction of neurologic disease by systemic gene therapy of mucopolysaccharidoses types I and IIIA, we review some of the major recent advances in viral and non-viral vectors, methods of their delivery and strategies leading to correction of both the nervous and somatic tissues as well as evaluation of functional correction of neurologic manifestations in animal models. We discuss two questions: what systemic gene therapy strategies work best for correction of both somatic and neurologic abnormalities in a lysosomal storage disorder and is there evidence that targeting peripheral tissues (e.g., in the liver) has a future for ameliorating neurologic disease in patients?


Subject(s)
Genetic Therapy , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/therapy , Animals , Blood-Brain Barrier , Disease Models, Animal , Genetic Vectors , Humans , Lysosomes/genetics , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/therapy
17.
Expert Opin Drug Deliv ; 12(2): 283-96, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25510418

ABSTRACT

INTRODUCTION: Mucopolysaccharidoses (MPS) are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent, the nervous system is not adequately responsive to current therapeutic approaches. AREAS COVERED: Recent advances in gene therapy show great promise for treating MPS. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of MPS. EXPERT OPINION: Gene therapy for treating neurological manifestations of MPS can be achieved by intraventricular, intrathecal, intranasal and systemic administrations. The intraventricular route of administration appears to provide the most widespread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain. The systemic route of delivery via intravenous infusion can also achieve widespread delivery to the CNS; however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of MPS.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/genetics , Mucopolysaccharidoses/therapy , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Dependovirus/genetics , Enzyme Replacement Therapy/methods , Humans , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/physiopathology
18.
Mol Ther ; 22(9): 1575-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25186559
19.
Elife ; 3: e02904, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24843032

ABSTRACT

Viruses have been used to deliver two types of site-specific nucleases into cells for targeted gene editing.


Subject(s)
Endonucleases/biosynthesis , Genetic Engineering/methods , Genetic Vectors , Genome, Human , Lentivirus/metabolism , Transcription Factors/biosynthesis , Transduction, Genetic , Transfection/methods , Humans
20.
Protein Sci ; 23(1): 23-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24243759

ABSTRACT

The Sleeping Beauty (SB) transposon is the most widely used DNA transposon in genetic applications and is the only DNA transposon thus far in clinical trials for human gene therapy. In the absence of atomic level structural information, the development of SB transposon relied primarily on the biochemical and genetic homology data. While these studies were successful and have yielded hyperactive transposases, structural information is needed to gain a mechanistic understanding of transposase activity and guides to further improvement. We have initiated a structural study of SB transposase using Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) spectroscopy to investigate the properties of the DNA-binding domain of SB transposase in solution. We show that at physiologic salt concentrations, the SB DNA-binding domain remains mostly unstructured but its N-terminal PAI subdomain forms a compact, three-helical structure with a helix-turn-helix motif at higher concentrations of NaCl. Furthermore, we show that the full-length SB DNA-binding domain associates differently with inner and outer binding sites of the transposon DNA. We also show that the PAI subdomain of SB DNA-binding domain has a dominant role in transposase's attachment to the inverted terminal repeats of the transposon DNA. Overall, our data validate several earlier predictions and provide new insights on how SB transposase recognizes transposon DNA.


Subject(s)
DNA Transposable Elements , Transposases/chemistry , Transposases/metabolism , Animals , Binding Sites , Circular Dichroism , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Sodium Chloride/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...