Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Psychiatry ; 28(5): 1946-1959, 2023 May.
Article in English | MEDLINE | ID: mdl-36631597

ABSTRACT

Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.

3.
Biol Psychiatry ; 92(1): 81-95, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34865853

ABSTRACT

BACKGROUND: ADNP is essential for embryonic development. As such, de novo ADNP mutations lead to an intractable autism/intellectual disability syndrome requiring investigation. METHODS: Mimicking humans, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 editing produced mice carrying heterozygous Adnp p.Tyr718∗ (Tyr), a paralog of the most common ADNP syndrome mutation. Phenotypic rescue was validated by treatment with the microtubule/autophagy-protective ADNP fragment NAPVSIPQ (NAP). RESULTS: RNA sequencing of spleens, representing a peripheral biomarker source, revealed Tyr-specific sex differences (e.g., cell cycle), accentuated in females (with significant effects on antigen processing and cellular senescence) and corrected by NAP. Differentially expressed, NAP-correctable transcripts, including the autophagy and microbiome resilience-linked FOXO3, were also deregulated in human patient-derived ADNP-mutated lymphoblastoid cells. There were also Tyr sex-specific microbiota signatures. Phenotypically, Tyr mice, similar to patients with ADNP syndrome, exhibited delayed development coupled with sex-dependent gait defects. Speech acquisition delays paralleled sex-specific mouse syntax abnormalities. Anatomically, dendritic spine densities/morphologies were decreased with NAP amelioration. These findings were replicated in the Adnp+/- mouse, including Foxo3 deregulation, required for dendritic spine formation. Grooming duration and nociception threshold (autistic traits) were significantly affected only in males. Early-onset tauopathy was accentuated in males (hippocampus and visual cortex), mimicking humans, and was paralleled by impaired visual evoked potentials and correction by acute NAP treatment. CONCLUSIONS: Tyr mice model ADNP syndrome pathology. The newly discovered ADNP/NAP target FOXO3 controls the autophagy initiator LC3 (microtubule-associated protein 1 light chain 3), with known ADNP binding to LC3 augmented by NAP, protecting against tauopathy. NAP amelioration attests to specificity, with potential for drug development targeting accessible biomarkers.


Subject(s)
Autistic Disorder , Intellectual Disability , Tauopathies , Animals , Autistic Disorder/pathology , Brain/metabolism , Evoked Potentials, Visual , Female , Gene Expression , Homeodomain Proteins/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Male , Mice , Nerve Tissue Proteins/genetics , Tauopathies/metabolism , tau Proteins
4.
J Mol Neurosci ; 70(11): 1671-1683, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32926339

ABSTRACT

The activity-dependent neuroprotective protein (ADNP) syndrome is an autistic-like disorder, instigated by mutations in ADNP. This syndrome is characterized by developmental delays, impairments in speech, motor function, abnormal hearing, and intellectual disabilities. In the Adnp-haploinsufficient mouse model, many of these impediments are evident, appearing in a sex-dependent manner. In zebra finch songbird (ZF; Taeniopygia guttata), an animal model used for song/language studies, ADNP mRNA most robust expression is observed in the cerebrum of young males, potentially corroborating with male ZF exclusive singing behavior and developed cerebral song system. Herein, we report a similar sex-dependent ADNP expression profile, with the highest expression in the cerebrum (qRT-PCR) in the brain of another songbird, the domesticated canary (Serinus canaria domestica). Additional analyses for the mRNA transcripts of the ADNP regulator, vasoactive intestinal peptide (VIP), sister gene ADNP2, and speech-related Forkhead box protein P2 (FoxP2) revealed multiple sex and brain region-dependent positive correlations between the genes (including ADNP). Parallel transcript expression patterns for FoxP2 and VIP were observed alongside specific FoxP2 increase in males compared with females as well as VIP/ADNP2 correlations. In spatial view, a sexually independent extensive form of expression was found for ADNP in the canary cerebrum (RNA in situ hybridization). The songbird cerebral mesopallium area stood out as a potentially high-expressing ADNP tissue, further strengthening the association of ADNP with sense integration and auditory memory formation, previously implicated in mouse and human.


Subject(s)
Autistic Disorder/genetics , Brain/metabolism , Canaries/genetics , Vocalization, Animal , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Brain/physiology , Canaries/physiology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Specificity , Sex Factors , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism
5.
Neurochem Res ; 44(6): 1494-1507, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30659505

ABSTRACT

Autism is a wide spread neurodevelopmental disorder with growing morbidity rates, affecting more boys than girls worldwide. Activity-dependent neuroprotective protein (ADNP) was recently recognized as a leading gene accounted for 0.17% of autism spectrum disorder (ASD) cases globally. Respectively, mutations in the human ADNP gene (ADNP syndrome), cause multi-system body dysfunctions with apparent ASD-related traits, commencing as early as childhood. The Adnp haploinsufficient (Adnp+/-) mouse model was researched before in relations to Alzheimer's disease and autism. Adnp+/- mice suffer from deficient social memory, vocal and motor impediments, irregular tooth eruption and short stature, all of which corresponds with reported phenotypes in patients with the ADNP syndrome. Recently, a more elaborated description of the ADNP syndrome was published, presenting impediments such as hearing disabilities in > 10% of the studied children. Irregular auditory brainstem response (ABR) has been connected to ASD-related cases and has been suggested as a potential hallmark for autism, allowing diagnosis of ASD risk and early intervention. Herein, we present detriment hearing in the Adnp+/- mice with atypical ABR and significant protein expression irregularities that coincides with ASD and hearing loss studies in the brain.


Subject(s)
Autism Spectrum Disorder/complications , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/genetics , Hearing Loss/etiology , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Animals , Auditory Cortex , Autism Spectrum Disorder/genetics , Choline O-Acetyltransferase/metabolism , Female , Glutamate Decarboxylase/metabolism , Hair Cells, Auditory/cytology , Hearing Loss/genetics , Male , Mice , Mutation
6.
J Clin Invest ; 128(11): 4956-4969, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30106381

ABSTRACT

Previous findings showed that in mice, complete knockout of activity-dependent neuroprotective protein (ADNP) abolishes brain formation, while haploinsufficiency (Adnp+/-) causes cognitive impairments. We hypothesized that mutations in ADNP lead to a developmental/autistic syndrome in children. Indeed, recent phenotypic characterization of children harboring ADNP mutations (ADNP syndrome children) revealed global developmental delays and intellectual disabilities, including speech and motor dysfunctions. Mechanistically, ADNP includes a SIP motif embedded in the ADNP-derived snippet drug candidate NAP (NAPVSIPQ, also known as CP201), which binds to microtubule end-binding protein 3, essential for dendritic spine formation. Here, we established a unique neuronal membrane-tagged, GFP-expressing Adnp+/- mouse line allowing in vivo synaptic pathology quantification. We discovered that Adnp deficiency reduced dendritic spine density and altered synaptic gene expression, both of which were partly ameliorated by NAP treatment. Adnp+/-mice further exhibited global developmental delays, vocalization impediments, gait and motor dysfunctions, and social and object memory impairments, all of which were partially reversed by daily NAP administration (systemic/nasal). In conclusion, we have connected ADNP-related synaptic pathology to developmental and behavioral outcomes, establishing NAP in vivo target engagement and identifying potential biomarkers. Together, these studies pave a path toward the clinical development of NAP (CP201) for the treatment of ADNP syndrome.


Subject(s)
Autistic Disorder/metabolism , Dendritic Spines/metabolism , Models, Neurological , Nerve Tissue Proteins/deficiency , Synapses/metabolism , Amino Acid Motifs , Animals , Autistic Disorder/genetics , Autistic Disorder/pathology , Autistic Disorder/physiopathology , Behavior, Animal , Biomarkers/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/pathology , Dendritic Spines/pathology , Gene Expression Regulation , Homeodomain Proteins , Humans , Mice , Mice, Knockout , Microtubules/genetics , Microtubules/metabolism , Microtubules/pathology , Mutation , Naphthoquinones/pharmacology , Synapses/pathology , Syndrome
7.
Peptides ; 72: 75-9, 2015 10.
Article in English | MEDLINE | ID: mdl-25895853

ABSTRACT

ADNP is a protein necessary for brain development, important for brain plasticity, cognitive and social functioning, characteristics that are all impaired in autism and in the Adnp(+/-) mouse model, in a sex-dependent manner. ADNP was originally discovered as a protein that is secreted from glial cells in response to vasoactive intestinal peptide (VIP). VIP is a major neuroprotective peptide in the CNS and PNS and was also associated with social recognition in rodents and aggression, pair-bonding and parental behaviors in birds. Comparative sequence alignment revealed high evolutionary conservation of ADNP in Chordata. Despite its importance in brain function, ADNP has never been studied in birds. Zebra finches (Taeniopygia guttata) are highly social songbirds that have a sexually dichotomous anatomical brain structure, with males demonstrating a developed song system, presenting a model to study behavior and potential sexually dependent fundamental differences. Here, using quantitative real time polymerase chain reaction (qRT-PCR), we discovered sexually dichotomous and age related differences in ADNP mRNA expression in three different regions of the song bird brain-cerebellum, cerebrum, and brain stem. Higher levels of ADNP mRNA were specifically found in young male compared to the female cerebrum, while aging caused a significant 2 and 3-fold decrease in the female and male cerebrum, respectively. Furthermore, a comparison between the three tested brain regions revealed unique sex-dependent ADNP mRNA distribution patterns, affected by aging. Future studies are aimed at deciphering the function of ADNP in birds, toward a better molecular understanding of sexual dichotomy in singing behavior in birds.


Subject(s)
Aging/metabolism , Avian Proteins/biosynthesis , Gene Expression Regulation/physiology , Nerve Tissue Proteins/biosynthesis , Sex Characteristics , Aging/genetics , Animals , Avian Proteins/genetics , Female , Male , Mice , Nerve Tissue Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Songbirds , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...