Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 50(1): 226-36, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22075210

ABSTRACT

Although extensive studies have done much to clarify the molecular mechanisms of osteoclastogenesis during the last ten years, there may still be unknown molecules associated with osteoclast differentiation. Thus, we used fluorescent differential display to screen for genes whose expression is induced by receptor activator of NF-κB ligand (RANKL), a crucial molecule for osteoclast formation. We identified caveolin-1 (Cav-1) as a RANKL-induced gene. Cav-1 is a major structural protein of caveolae and lipid rafts, cholesterol-enriched microdomains in the plasma membrane (PM). The RANKL-induced Cav-1 was immediately conveyed to lipid rafts. Conversely, expression of flotillin-1 (Flot-1), another scaffolding protein of lipid rafts, was reduced during osteoclastogenesis, indicating conversion of Flot-1-predominant rafts into Cav-1-enriched rafts. However, in vitro osteoclastogenesis of precursor cells from Cav-1-null mice was comparable to that of wild-type mice, while Cav-2 expression in the knockout osteoclasts was maintained. Conversely, Cav-2 gene silencing in Cav-1-null osteoclast precursors using siRNA for Cav-2 increased osteoclast formation, suggesting that the Cav-1/Cav-2 complex may act as a negative regulator for osteoclastogenesis. On the other hand, destruction of lipid rafts by removal of cholesterol from the PM by methyl-ß-cyclodextrin (MCD) treatment caused disordered signal transductions for osteoclastogenesis, such as hyperactivation of Erk1/2 and insensitivity of Akt to RANKL stimulus. The abnormal signaling was reproduced by deleting exogenous lipoproteins from the culture medium, which also resulted in reduced osteoclast formation. In addition, the deletion caused delayed expression of nuclear factor of activated T cells c1 (NFATc1), and depressed its activation in the cytosol and inhibited its translocation into nuclei. Simultaneously, the deletion reduced the level of FcRγ, a trigger protein for initiating the calcium signaling needed to activate NFATc1, and decreased Cav-1 in lipid rafts. These findings indicate that the molecular mechanisms of osteoclastogenesis are highly dependent on extracellular lipoprotein and the integrity of lipid rafts, and suggest possible involvement of cholesterol.


Subject(s)
Bone Resorption/metabolism , Caveolin 1/metabolism , Lipoproteins/metabolism , Osteoclasts/physiology , RANK Ligand/metabolism , Stem Cells/physiology , Animals , Caveolin 1/genetics , Caveolin 2/genetics , Caveolin 2/metabolism , Gene Silencing , Male , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , RANK Ligand/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction/physiology , Stem Cells/cytology
2.
J Bone Miner Metab ; 27(1): 46-56, 2009.
Article in English | MEDLINE | ID: mdl-19066718

ABSTRACT

Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.


Subject(s)
Cathepsin A/metabolism , NF-kappa B p50 Subunit/metabolism , Osteoclasts/physiology , Transcription Factor RelA/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cathepsin A/genetics , Cell Line , Humans , Macrophages/cytology , Macrophages/physiology , Mice , Monocytes/cytology , Monocytes/physiology , NF-kappa B p50 Subunit/genetics , Osteoclasts/cytology , Protein Binding , RANK Ligand/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factor RelA/genetics , Transcription, Genetic , Two-Hybrid System Techniques
3.
J Bone Miner Metab ; 25(1): 19-27, 2007.
Article in English | MEDLINE | ID: mdl-17187190

ABSTRACT

Osteoclastogenic cytokines produced by T and B lineage cells and interleukin (IL)-7-induced expansion of the pool size of osteoclast precursors have been suggested to play an important role in acceleration of osteoclastogenesis induced by estrogen deficiency. However, the contribution of increased RANKL produced by osteoblasts/stromal cells to increase osteoclastogenesis in a mouse model of estrogen-deficient osteoporosis and in vitro effects of IL-7 on osteoclast precursor generation remain controversial. Thus, we investigated the effect of ovariectomy (OVX) of mice on production of RANKL, osteoprotegerin (OPG), and IL-7 in bone and the effect of IL-7 on osteoclast precursor generation in vitro. OVX did not significantly stimulate mRNA expressions of RANKL and OPG in whole femurs. Because the epiphysis, but not the femoral shaft (diaphysis) or bone marrow, is the main site of osteoclastogenesis, it is important to specifically analyze mRNA expression by osteoblasts/stromal cells at these parts of the femur. Therefore, we isolated RNA from bone marrow cell-free epiphysis, diaphysis, and flushed-out bone marrow and examined mRNA expression. The results showed no significant changes of RANKL and OPG mRNA expression in any part of the femur. In addition, OVX did not significantly affect RANKL and OPG mRNA expression by the adherent stromal cells isolated from flushed-out bone marrow cells but did stimulate RANKL mRNA expression by B220(+) cells in the nonadherent cell fraction. On the other hand, OVX increased IL-7 mRNA expression in the femur as well as IL-7 concentrations in bone fluid. In cultures of unfractionated bone cells isolated by vigorous agitation of minced whole long bones to release the cells tightly attached to the bone surfaces, but not in cocultures of clonal osteoblasts/stromal cells and flushed-out bone marrow cells, IL-7 stimulated generations of osteoclasts as well as osteoclast precursors. These data suggest that increased RANKL production by osteoblasts/stromal cells is unlikely to play a central role in acceleration of osteoclastogenesis in estrogen deficiency of mice and that IL-7 stimulates osteoclast precursor generation, presumably through an action of IL-7 on the cells attached to bone rather than on cells contained in the bone marrow cell population.


Subject(s)
Bone and Bones/cytology , Interleukin-7/metabolism , Osteoblasts/metabolism , Ovariectomy , RANK Ligand/genetics , Stromal Cells/metabolism , Animals , Bone and Bones/drug effects , Cells, Cultured , Interleukin-7/pharmacology , Mice , Osteoblasts/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , RANK Ligand/metabolism , RNA, Messenger/biosynthesis , Stromal Cells/drug effects , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...