Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(1)2021 01 15.
Article in English | MEDLINE | ID: mdl-33467515

ABSTRACT

Severe malaria caused by Plasmodium falciparum poses a major global health problem with high morbidity and mortality. P. falciparum harbors a family of pore-forming proteins (PFPs), known as perforin like proteins (PLPs), which are structurally equivalent to prokaryotic PFPs. These PLPs are secreted from the parasites and, they contribute to disease pathogenesis by interacting with host cells. The severe malaria pathogenesis is associated with the dysfunction of various barrier cells, including endothelial cells (EC). Several factors, including PLPs secreted by parasites, contribute to the host cell dysfunction. Herein, we have tested the hypothesis that PLPs mediate dysfunction of barrier cells and might have a role in disease pathogenesis. We analyzed various dysfunctions in barrier cells following rPLP2 exposure and demonstrate that it causes an increase in intracellular Ca2+ levels. Additionally, rPLP2 exposed barrier cells displayed features of cell death, including Annexin/PI positivity, depolarized the mitochondrial membrane potential, and ROS generation. We have further performed the time-lapse video microscopy of barrier cells and found that the treatment of rPLP2 triggers their membrane blebbing. The cytoplasmic localization of HMGB1, a marker of necrosis, further confirmed the necrotic type of cell death. This study highlights the role of parasite factor PLP in endothelial dysfunction and provides a rationale for the design of adjunct therapies against severe malaria.


Subject(s)
Endothelial Cells/parasitology , Malaria, Falciparum/parasitology , Necrosis/parasitology , Perforin/adverse effects , Protozoan Proteins/adverse effects , Animals , Apoptosis , Biomarkers/metabolism , Blood-Brain Barrier , Calcium/metabolism , Cell Line , Cell Membrane Permeability , Cell Survival , Dogs , Erythrocytes/parasitology , HMGB1 Protein/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Madin Darby Canine Kidney Cells , Mitochondrial Membranes , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Reactive Oxygen Species/metabolism , Recombinant Proteins
2.
Article in English | MEDLINE | ID: mdl-32266171

ABSTRACT

The pore forming Plasmodium Perforin Like Proteins (PPLP), expressed in all stages of the parasite life cycle are critical for completion of the parasite life cycle. The high sequence similarity in the central Membrane Attack Complex/ Perforin (MACPF) domain among PLPs and their distinct functional overlaps define them as lucrative target for developing multi-stage antimalarial therapeutics. Herein, we evaluated the mechanism of Pan-active MACPF Domain (PMD), a centrally located and highly conserved region of PPLPs, and deciphered the inhibitory potential of specifically designed PMD inhibitors. The E. coli expressed rPMD interacts with erythrocyte membrane and form pores of ~10.5 nm height and ~24.3 nm diameter leading to hemoglobin release and dextran uptake. The treatment with PMD induced erythrocytes senescence which can be hypothesized to account for the physiological effect of disseminated PLPs in loss of circulating erythrocytes inducing malaria anemia. The anti-PMD inhibitors effectively blocked intraerythrocytic growth by suppressing invasion and egress processes and protected erythrocytes against rPMD induced senescence. Moreover, these inhibitors also blocked the hepatic stage and transmission stage parasite development suggesting multi-stage, transmission-blocking potential of these inhibitors. Concievably, our study has introduced a novel set of anti-PMD inhibitors with pan-inhibitory activity against all the PPLPs members which can be developed into potent cross-stage antimalarial therapeutics along with erythrocyte senescence protective potential to occlude PPLPs mediated anemia in severe malaria.


Subject(s)
Escherichia coli , Plasmodium , Cell Membrane , Erythrocytes , Perforin , Plasmodium falciparum , Protozoan Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...