Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34358074

ABSTRACT

Personalized cancer treatment based on specific mutations offers targeted therapy and is preferred over "standard" chemotherapy. Proteinoid polymers produced by thermal step-growth polymerization of amino acids may form nanocapsules (NCs) that encapsulate drugs overcoming miscibility problems and allowing passive targeted delivery with reduced side effects. The arginine-glycine-glutamic acid (RGD) sequence is known for its preferential attraction to αvß3 integrin, which is highly expressed on neovascular endothelial cells that support tumor growth. Here, tumor-targeted RGD-based proteinoid NCs entrapping a synergistic combination of Palbociclib (Pal) and Alpelisib (Alp) were synthesized by self-assembly to induce the reduction of tumor cell growth in different types of cancers. The diameters of the hollow and drug encapsulating poly(RGD) NCs were 34 ± 5 and 22 ± 3 nm, respectively; thereby, their drug targeted efficiency is due to both passive and active targeting. The encapsulation yield of Pal and Alp was 70 and 90%, respectively. In vitro experiments with A549, MCF7 and HCT116 human cancer cells demonstrate a synergistic effect of Pal and Alp, controlled release and dose dependence. Preliminary results in a 3D tumor spheroid model with cells derived from patient-derived xenografts of colon cancer illustrate disassembly of spheroids, indicating that the NCs have therapeutic potential.

2.
Polymers (Basel) ; 12(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339090

ABSTRACT

Proteinoids are non-toxic biodegradable polymers prepared by thermal step-growth polymerization of amino acids. Here, P(RGD) proteinoids and proteinoid nanocapsules (NCs) based on D-arginine, glycine, and L-aspartic acid were synthesized and characterized for targeted tumor therapy. Doxorubicin (Dox), a chemotherapeutic drug used for treatment of a wide range of cancers, known for its adverse side effects, was encapsulated during self-assembly to form Dox/P(RGD) NCs. In addition, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which can initiate apoptosis in most tumor cells but undergoes fast enzyme degradation, was stabilized by covalent conjugation to hollow P(RGD) NCs. The effect of polyethylene glycol (PEG) conjugation was also studied. Cytotoxicity tests on CAOV-3 ovarian cancer cells demonstrated that Dox/P(RGD) and TRAIL-P(RGD) NCs were as effective as free Dox and TRAIL with cell viability of 2% and 10%, respectively, while PEGylated NCs were less effective. Drug-bearing P(RGD) NCs offer controlled release with reduced side effects for improved therapy.

3.
ACS Appl Mater Interfaces ; 12(46): 51940-51951, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33156599

ABSTRACT

Fluorescent carbon dots (CDs) play a versatile role in materials science. Herein, we have developed alginate-derived nitrogen-doped CDs as a drug carrier and a toughening agent for hydrogels by a microwave-assisted method. In the first phase of work, we carried out covalent conjugation of the drug onto the CD surface for controlled delivery of drug molecules, and in the second phase of work, we demonstrated how CDs could act as a toughening agent as well as a viscosity modifier for poly(acrylic acid-co-methacrylamide) copolymer hydrogels. The hydrogels were evaluated by Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance. The hybrid hydrogels have been tested to be mechanically robust with extraordinary stretchability (∼1200% elongation at break), recoverable to the original position (low permanent set), tunable water uptake, and thixotropic character in dynamic stress. The crosslinked structure has been evaluated through void calculation revealing gradual densification of the network with increasing CD content. Exceptional gel strength (ratio of elastic modulus to loss modulus; G'/G″) has been achieved from analogous crosslinking made by CDs. The delayed network rupturing and superstretchability could make this material a good choice for soft biomaterials and soft robotics.


Subject(s)
Carbon/chemistry , Hydrogels/chemistry , Microwaves , Polysaccharides/chemistry , Quantum Dots/chemistry , Doxorubicin/chemistry , Doxorubicin/metabolism , Drug Carriers/chemistry , Elastic Modulus , Polymethacrylic Acids/chemistry , Rheology
4.
ACS Omega ; 5(37): 23568-23577, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32984676

ABSTRACT

RGD sequence is a tripeptide composed of three amino acids: arginine (R), glycine (G), and aspartic acid (D). The RGD peptide has a high affinity to the integrin alpha v beta 3, which is overexpressed on the membrane of many cancer cells and is attracted to areas of angiogenesis. Proteinoids are biodegradable polymers based on amino acids which are formed by bulk thermal step-growth polymerization mechanism. Hollow proteinoid nanoparticles (NPs) may be formed via self-assembly process of the proteinoid polymers. We propose using novel RGD-based proteinoid polymers to manufacture NPs in which the RGD motif is self-incorporated in the proteinoid backbone. Such P(RGD) NPs can act both as a drug carrier (by encapsulation of a desired drug) and as a targeting delivery system. This article presents the synthesis of four RGD proteinoids with different RGD optical configurations, (d) or (l) arginine, glycine, and (d) or (l) aspartic acid, in order to determine which configuration is optimal as a drug-targeting carrier. These new RGD proteinoid polymers possess high molecular weights and molecular weight monodispersity. Homonuclear nuclear magnetic resonance methods were employed to predict the expected concentration of RGD tripeptide sequence in the polymer. Near infrared fluorescent NPs have been prepared by the encapsulation of indocyanine green (ICG) dye within the different P(RGD) NPs. The dry diameters of the hollow P(RdGDd), P(RdGD), P(RGD), and P(RGDd) NPs are 55 ± 13, 48 ± 9, 45 ± 11, and 42 ± 9 nm, respectively, whereas those of the ICG-encapsulated NPs were significantly higher, 141 ± 24, 95 ± 13, 86 ± 11, and 87 ± 12 nm, respectively. The ICG-encapsulated P(RdGD) NPs exhibited higher selectivity toward epithelial injury, as demonstrated using an in vitro scratch assay, because the P(RdGD) NPs accumulated in the injured area at higher concentrations when compared to other P(RGD) NPs with different chiralities. Therefore, the P(RdGD) polymer configuration is the polymer of choice for use as a targeted drug carrier to areas of angiogenesis, such as in tumors, wounds, or cuts.

5.
ACS Appl Mater Interfaces ; 12(19): 22278-22286, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32297505

ABSTRACT

Micropatterns of conductive polymers are key for various applications in the fields of flexible electronics and sensing. A bottom-up method that allows high-resolution printing without additives is still lacking. Here, such a method is presented based on microprinting by the laser-induced microbubble technique (LIMBT). Continuous micropatterning of polyaniline (PANI) was achieved from a dispersion of the emeraldine base form of PANI (EB-PANI) in n-methyl-2-pyrrolidone (NMP). A focused laser beam is absorbed by the EB-PANI nanoparticles and leads to formation of a microbubble, followed by convection currents, which rapidly pin EB-PANI nanoparticles to the bubble/substrate interface. Micro-Raman spectra confirmed that the printed patterns preserve the molecular structure of EB-PANI. A simple transformation of the printed lines to the conducting emeraldine salt form of PANI (ES-PANI) was achieved by doping with various acid solutions. The hypothesized deposition mechanism was verified, and the resulting structures were characterized by microscopic methods. The microstructures displayed conductivities of 3.8 × 10-1 S/cm upon HCl doping and 1.5 × 10-1 S/cm upon H2SO4 doping, on par with state-of-the-art patterning methods. High fidelity control over the width of the printed lines down to ∼650 nm was accomplished by varying the laser power and microscope stage velocity. This straightforward bottom-up method using low-power lasers offers an alternative to current microfabrication techniques.

6.
RSC Adv ; 10(57): 34364-34372, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-35514373

ABSTRACT

Proteinoids are non-toxic biodegradable polymers based on thermal step-growth polymerization of natural or synthetic amino acids. Hollow proteinoid nanoparticles (NPs) may then be formed via a self-assembly process of the proteinoid polymers in an aqueous solution. In the present article polymers and NPs based on d-arginine, glycine and l-aspartic acid, poly(RDGD), were synthesized for tumor targeting, particularly due to the high affinity of the RGD motif to areas of angiogenesis. Near IR fluorescent P(RDGD) NPs were prepared by encapsulating the fluorescent NIR dye indocyanine green (ICG) within the formed P(RDGD) NPs. Here, we investigate the effect of the covalent conjugation of polyethylene glycol (PEG), with different molecular weights, to the surface of the near IR encapsulated P(RDGD) NPs on the release of the dye to human serum due to bio-degradation of the proteinoid NPs and on the uptake by tumors. This work illustrates that the release of the encapsulated ICG from the non-PEGylated NPs is significantly faster than for that observed for the PEGylated NPs, and that the higher molecular weight is the bound PEG spacer the slower is the dye release profile. In addition, in a chicken embryo model, the non-PEGylated ICG-encapsulated P(RDGD) NPs exhibited a higher uptake in the tumor region in comparison to the PEGylated ICG-encapsulated P(RDGD) NPs. However, in a tumor xenograft mouse model, which enables a prolonged experiment, the importance of the PEG is clearly noticeable, when a high concentration of PEGylated P(RDGD) NPs was accumulated in the area of the tumor compared to the non-PEGylated P(RDGD). Moreover, the length of the PEG chain plays a major role in the ability to target the tumor. Hence, we can conclude that selectivity towards the tumor area of non-PEGylated and the PEGylated ICG-encapsulated P(RDGD) NPs can be utilized for targeting to areas of angiogenesis, such as in the cases of tumors, wounds or cuts, etc.

7.
Polymers (Basel) ; 11(7)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340429

ABSTRACT

The shape and porosity of polymeric colloids are two properties that highly influence their ability to accomplish specific tasks. For micro-sized colloids, the control of both properties was demonstrated by the photo-induced phase separation of droplets of NOA81-a thiol-ene based UV-curable adhesive-mixed with acetone, water, and polyethylene glycol. The continuous phase was perfluoromethyldecalin, which does not promote phase separation prior to UV activation. A profound influence of the polymer concentration on the particle shape was observed. As the photo-induced phase separation is triggered by UV radiation, polymerization drives the extracted solution out of the polymeric matrix. The droplets of the extracted solution coalesce until they form a dimple correlated to the polymer concentration, significantly changing the shape of the formed solid colloids. Moreover, control could be gained over the porosity by varying the UV intensity, which governs the kinetics of the reaction, without changing the chemical composition; the number of nanopores was found to increase significantly at higher intensities.

SELECTION OF CITATIONS
SEARCH DETAIL
...