Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38540225

ABSTRACT

Spinal fusions are performed to treat congenital skeletal malformations, spondylosis, degenerative disk diseases, and other pathologies of the vertebrae that can be resolved by reducing motion between neighboring vertebrae. Unfortunately, up to 100,000 fusion procedures fail per year in the United States, suggesting that efforts to develop new approaches to improve spinal fusions are justified. We have explored whether the use of an osteotropic oligopeptide to target an attached bone anabolic agent to the fusion site might be exploited to both accelerate the mineralization process and improve the overall success rate of spinal fusions. The data presented below demonstrate that subcutaneous administration of a modified abaloparatide conjugated to 20 mer of D-glutamic acid not only localizes at the spinal fusion site but also outperforms the standard of care (topically applied BMP2) in both speed of mineralization (p < 0.05) and overall fusion success rate (p < 0.05) in a posterior lateral spinal fusion model in male and female rats, with no accompanying ectopic mineralization. Because the bone-localizing conjugate can be administered ad libitum post-surgery, and since the procedure appears to improve on standard of care, we conclude that administration of a bone-homing anabolic agent for improvement of spinal fusion surgeries warrants further exploration.

2.
J Control Release ; 329: 570-584, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33031877

ABSTRACT

PURPOSE: Although more than 18,000,000 fractures occur each year in the US, methods to promote fracture healing still rely primarily on fracture stabilization, with use of bone anabolic agents to accelerate fracture repair limited to rare occasions when the agent can be applied to the fracture surface. Because management of broken bones could be improved if bone anabolic agents could be continuously applied to a fracture over the entire course of the healing process, we undertook to identify strategies that would allow selective concentration of bone anabolic agents on a fracture surface following systemic administration. Moreover, because hydroxyapatite is uniquely exposed on a broken bone, we searched for molecules that would bind with high affinity and specificity for hydroxyapatite. We envisioned that by conjugating such osteotropic ligands to a bone anabolic agent, we could acquire the ability to continuously stimulate fracture healing. RESULTS: Although bisphosphonates and tetracyclines were capable of localizing small amounts of peptidic payloads to fracture surfaces 2-fold over healthy bone, their specificities and capacities for drug delivery were significantly inferior to subsequent other ligands, and were therefore considered no further. In contrast, short oligopeptides of acidic amino acids were found to localize a peptide payload to a bone fracture 91.9 times more than the control untargeted peptide payload. Furthermore acidic oligopeptides were observed to be capable of targeting all classes of peptides, including hydrophobic, neutral, cationic, anionic, short oligopeptides, and long polypeptides. We further found that highly specific bone fracture targeting of multiple peptidic cargoes can be achieved by subcutaneous injection of the construct. CONCLUSIONS: Using similar constructs, we anticipate that healing of bone fractures in humans that have relied on immobilization alone can be greately enhanced by continuous stimulation of bone growth using systemic administration of fracture-targeted bone anabolic agents.


Subject(s)
Fractures, Bone , Bone and Bones , Diphosphonates , Fracture Healing , Fractures, Bone/drug therapy , Humans , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...