Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 65(6): 833-848, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36544065

ABSTRACT

In plant development, flowering is the most widely studied process. Floral forms show large diversity in different species due to simple variations in basic architecture. To determine the floral gene expression during the past decade, MADS-box genes have identified as key regulators in both reproductive and vegetative plant development. Traditional genetics and functional genomics tools are now available to elucidate the expression and function of this complex gene family on a much larger scale. Moreover, comparative analysis of the MADS-box genes in diverse flowering and non-flowering plants, boosted by various molecular technologies such as ChIP and next-generation DNA sequencing, contributes to our understanding of how this important gene family has expanded during the evolution of land plants. Likewise, the big data analysis revealed combined activity of transcriptional regulators and floral organ identity factors regulate the flower developmental programs. Thus, with the help of cutting-edge technologies like RNA-Sequencing, sex determination is now better understood in few non-model plants Therefore, the recent advances in next-generation sequencing (NGS) should enable researchers to identify the full range of floral gene functions, which will significantly help to understand plant development and evolution. This review summarizes the floral homeotic genes in model and non-model species to understand the flower development genes and dioecy evolution.


Subject(s)
MADS Domain Proteins , Plants , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Plants/genetics , Plants/metabolism , Plant Development , Phenotype , High-Throughput Nucleotide Sequencing , Flowers , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
2.
Neurosci Lett ; 786: 136783, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35810962

ABSTRACT

Cocaine- and amphetamine-regulated transcript (CART) peptide is a multifaceted neuropeptide involved in several physiological functions including appetite and reproduction. While studies in mammals, aves and fishes suggest evolutionary conserved role of CART, the information in amphibian is scanty. We have investigated the reproductive phase related variations of CART in the brain of adult male Microhyla ornata. Seasonal changes in the expression of CART peptide were noticed in the brain and pituitary of M. ornata. Significant differences were observed in the nucleus infundibularis ventralis (NIV), epiphysis (E), anteroventral tegmental region (AV), raphe nucleus (Ra) of the brain and pars intermedia (PI), pars distalis (PD) of the pituitary. Compared to the pre-breeding and post-breeding seasons, increase in CART immunoreactivity was seen in E, NIV, AV, Ra of brain and PI, PD of pituitary gland of animals collected during breeding season. Similarly, highest mRNA levels of CART were also observed in the breeding season in the middle region of brain that includes hypothalamus and pituitary gland. Variation in the levels of CART peptide and mRNA in the brain of M. ornata suggests its conserved role in seasonal control of appetite and reproduction.


Subject(s)
Cocaine , Neuropeptides , Amphetamines , Animals , Brain/metabolism , Male , Mammals , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Peptides/metabolism , Pituitary Gland/metabolism , RNA, Messenger/metabolism , Reproduction/physiology
3.
Neurosci Lett ; 740: 135409, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33045276

ABSTRACT

Neuropeptide Y(NPY) is known to play a pivotal role in various physiological functions including appetite and reproduction. While studies in mammals, fishes and reptiles suggest a temporal and evolutionary conserved role of NPY, the information in amphibian is scanty. We have investigated the reproductive phase related variations of NPY in the brain of Microhyla ornata (M. ornata), using immunohistochemistry and reverse transcription quantitative PCR (RT-qPCR). The highest expression of NPY peptide was observed in the preoptic area (Poa), nucleus infundibularis ventralis (NIV) and nucleus reticularis isthmi (NRIS) of M. ornata in breeding season compared to pre-breeding as well as post-breeding season. In parallel, highest mRNA levels of NPY were also observed in the breeding season in the middle region of brain that includes hypothalamus of M. ornata. Variation in the levels of NPY peptide and mRNA levels in the brain of M. ornata point towards seasonal control of appetite and reproduction.


Subject(s)
Brain Chemistry/physiology , Bufonidae/physiology , Neuropeptide Y/metabolism , Reproduction/physiology , Animals , Appetite , Immunohistochemistry , Male , Neuropeptide Y/genetics , Preoptic Area/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Seasons
4.
Neuropeptides ; 74: 1-10, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30826125

ABSTRACT

Neuropeptide Y (NPY) is involved in sex-specific behavioural processes in vertebrates. NPY integrates energy balance and reproduction in mammals. However, the relevance of NPY in reproduction of lower vertebrates is understudied. In the present study, we have investigated neuroanatomical distribution and sex-specific differences of NPY in the brain of Microhyla ornata using immunohistochemistry and quantitative real time PCR. NPY is widely distributed throughout the brain of M. ornata. We observed NPY immunoreactivity in the cells of the nucleus accumbens, striatum pars dorsalis, dorsal pallium, medial pallium, ventral pallium, bed nucleus of stria terminalis, preoptic nucleus, infundibular region, median eminence and pituitary gland of adult M. ornata. A higher number of NPY- immunoreactive cells were observed in the preoptic nucleus (p < .01), nucleus infundibularis ventralis (p < .001) and anteroventral tegmental nucleus (p < .001) of the female as compared to that of the male frog. Real-Time PCR revealed higher mRNA levels of NPY in the female as compared to male frogs in the mid-brain region that largely contains the hypothalamus. Sexual dimorphism of NPY expression in M. ornata suggests that NPY may be involved in the reproductive physiology of anurans.


Subject(s)
Anura/metabolism , Brain/metabolism , Neuropeptide Y/metabolism , Sex Characteristics , Animals , Female , Immunohistochemistry , Male , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...