Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 752: 141713, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32892041

ABSTRACT

Olive mill wastewater (OMW) is nowadays considered as a serious source pollution. At the same time, it contains high amounts of nutrients, especially potassium and phosphorus that could be recovered for agricultural purposes. The aim of the current experimental research work is to investigate the agronomic potential use of OMW based biochar produced from the slow pyrolysis at 500 °C of raw cypress sawdust (CS) impregnated with OMW (ICS-OMW-B). In order to understand the contribution of OMW, two additional biochars were produced from raw cypress sawdust (RCS-B) and cypress sawdust pretreated with potassium chloride (ICS-K-B). Results indicated that RCS impregnation by OMW significantly improved the produced biochar's chemical properties, especially its nutrients contents. Furthermore, in comparison with the other biochars, ICS-OMW-B application as an organic fertilizer showed promising results in terms of produced fresh and dry masses, as well as potassium bioavailability as assessed in test experiments with ryegrass. For instance, the dry matter masses of the rye-grass treated with ICS-OMW-B were about 23, 34 and 50 wt% higher than the ones measured for the tests using RCS-B, ICS-K-B and synthetic K-fertilizer as amendments, respectively. Besides, this biochar has a potential effect on the suppression of various pathogens existing in the tested agricultural soil. All these results demonstrated that the biochar generated from the slow pyrolysis of impregnated sawdust with OMW could be considered as attractive and promising organic fertilizer for acidic agricultural soils.


Subject(s)
Cupressus , Olea , Charcoal , Industrial Waste/analysis , Olive Oil , Soil , Wastewater
2.
J Environ Manage ; 216: 305-314, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-28648547

ABSTRACT

The ability of biochars, derived from the pyrolysis at 400 °C; 500 °C and 600 °C of pretreated cypress sawdust with 20 wt% magnesium chloride (MgCl2) solutions, in recovering phosphorus from aqueous solutions was investigated under various experimental conditions in batch mode. The experimental results indicated that cypress sawdust pretreatment with MgCl2 induced important modifications of the physical and chemical biochars' properties favoring phosphorus recovery from the used synthetic solutions. Moreover, phosphorus recovery efficiency increased with the increase of the used pyrolysis temperature. Indeed, for an aqueous pH of 5.2 and a phosphorus concentration of 75 mg L-1, the recovered amounts increased from 19.2 mg g-1 to 33.8 mg g-1 when the used pyrolysis temperature was raised from 400 °C to 600 °C. For all the tested biochars, the phosphorus recovery kinetics data were well fitted by the pseudo-second-order model, and the equilibrium state was obtained after 180 min of contact time. Furthermore, the phosphorus recovery data at equilibrium were well described by the Langmuir model with a maximal recovery capacity of 66.7 mg g-1 for the magnesium pretreated biochar at 600 °C. Phosphorus recovery by the used biochars occurred probably through adsorption onto biochars' active sites as well as precipitation with magnesium ions as magnesium phosphates components. All these results suggested that biochars derived from MgCl2 pretreated cypress sawdust could be considered as promising materials for phosphorus recovery from wastewaters for a possible further subsequent use in agriculture as amendments.


Subject(s)
Charcoal , Phosphorus/isolation & purification , Adsorption , Cupressus , Magnesium , Solutions
3.
J Environ Manage ; 180: 439-49, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27266649

ABSTRACT

Lead removal from aqueous solutions by raw cypress (Cupressus sempervirens L.) sawdust (RCS) and its derivative magnesium pretreated biochar (Mg-B) was investigated under static and dynamic conditions through batch and column assays. The Hydrus-1D model was used to estimate the transport parameters of the lead measured breakthrough curves. The batch experiments results showed that Mg-B was very efficient in removing lead compared to RCS and several other previously tested natural and modified materials. The column experiments results indicated that for both RCS and Mg-B, lead breakthrough curves and the related removal efficiencies were mainly dependent on the used initial concentration and the adsorbents bed height. The use of Hydrus-1D showed that the two-site chemical non-equilibrium model describes better the experimental lead breakthrough curves for both RCS and Mg-B as the equilibrium model.


Subject(s)
Charcoal/chemistry , Lead/chemistry , Magnesium/chemistry , Models, Theoretical , Water Pollutants, Chemical/chemistry , Wood/chemistry , Adsorption , Cupressus , Solutions , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...