Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8696, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622210

ABSTRACT

It is widely recognised that over-reliance on GNSS (e.g GPS) for time synchronisation represents an acute threat to modern society, and a diversity of alternatives are required to mitigate the threat of an outage. This paper proposes a GNSS alternative using time dissemination over national scale transmission or distribution networks. The method utilises the same frequency bandwidth and coupling technology as established power line carrier technology in conjunction with modern chirp Spread Spectrum modulation. The basis of the method is the transmission of a time synchronised chirp from a central substation, coupled into the aerial modes of the transmission line. During GNSS operation, all substations can estimate the time of flight by correlating the received chirp with a time-synchronised local copy. During GNSS outage, time sychronisation to the central substation is maintained by correcting for the precalculated time of flight. It is shown that recent advances in chirp spread spectrum allow for a computationally efficient algorithm with the capacity to compute hundreds of thousand of chirp correlations every second, facilitating timing accuracy which satisfies the majority of smart grid applications. ATP-EMTP simulations of the method on large transmission networks demonstrate sub-µs timing accuracy even in the presence of low SNR and impulsive noise. An FPGA prototype demonstrates experimentally sub-µs accuracy for time dissemination over a distance of 700 m. Averaging over time is shown to facilitate satisfactory performance down to - 20 dB , which could extend the range of the system to a national scale and a time dissemination network invulnerable to wireless spoofing and jamming attack vectors.

2.
Polymers (Basel) ; 14(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35406249

ABSTRACT

Metal contaminants can distort the surface electric field of the tri-post epoxy insulator and cause serious surface charge accumulation, significantly reducing the insulation performance of the insulator under the superimposed DC and lightning impulse voltage. In this paper, an experimental platform for charge accumulation and surface flashover of tri-post epoxy insulators under the superimposed DC and lightning impulse voltage was built, by surface point measurement and charge inversion calculation, the surface charge distribution characteristics of tri-post insulators with attached particles was experimentally explored and the influence law of attached metal particles on the charge accumulation was discussed. The results show that metal particles can cause a surge in the surface charge density of the tri-post epoxy insulator, forming bipolar charge spots whose polarity is opposite to that of the adjacent electrodes. The adsorbed metal dust can cause the polarity reversal of adjacent surface charges, forming a large-area unipolar charge spot. Moreover, the flashover voltage of a tri-post insulator under DC superimposed lightning impulse voltage with a clean surface and attached metal particle was measured, and the synergistic induction mechanism of charge spot accumulation and metal particle discharge on the flashover along the face of the tri-post insulator is thereby revealed. Compared with the clean insulators, the surface flashover voltages of tri-post epoxy insulators with metal contaminants adhered decrease under the superimposed voltages of different polarities, but the decline amplitude is greater under the heteropolar composite voltage. When adhered to the middle of the insulator leg, the distribution range of bipolar charge spots is the widest, and the surface flashover voltage decreases sharply, which can drop by 32% compared with the absence of particles. In addition, when the metal dust adsorbed by the tri-post epoxy insulator has a wide distribution range, the impact of metal dust on the flashover voltage is greater than that of the attached metal particles, and its hazard cannot be ignored. The research results can provide a reference for the insulation test method and optimal design of the DC tri-post epoxy insulator.

3.
Polymers (Basel) ; 15(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616392

ABSTRACT

Resin-impregnated paper (RIP) bushing has gained significant interest due to its extended application in Extra High Voltage (EHV) and Ultra High Voltage (UHV) electricity transmission systems. However, the design criterion of its overall structure, the geometry parameters of the condenser layers, and stress release devices, etc., are still not fully understood. This article proposes a unique electric field optimization technique to integrate both the analytical and the numerical methods. The charge simulation method (CSM) is employed to create the overall equipotential surface, within which the finite element analysis (FEA) is adapted to study the localized field enhancement effects, taking into consideration the multi-physics coupled fields. A case study is performed on an actual UHV bushing. The results are compared to the traditional methods, to demonstrate the benefit of the hybrid method.

SELECTION OF CITATIONS
SEARCH DETAIL
...