Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 13343, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587261

ABSTRACT

Thanks to its increased sensitivity, single-shot ultrahigh field functional MRI (UHF fMRI) could lead to valuable insight about subtle brain functions such as olfaction. However, UHF fMRI experiments targeting small organs next to air voids, such as the olfactory bulb, are severely affected by field inhomogeneity problems. Spatiotemporal Encoding (SPEN) is an emerging single-shot MRI technique that could provide a route for bypassing these complications. This is here explored with single-shot fMRI studies on the olfactory bulbs of male and female mice performed at 15.2T. SPEN images collected on these organs at a 108 µm in-plane resolution yielded remarkably large and well-defined responses to olfactory cues. Under suitable T2* weightings these activation-driven changes exceeded 5% of the overall signal intensity, becoming clearly visible in the images without statistical treatment. The nature of the SPEN signal intensity changes in such experiments was unambiguously linked to olfaction, via single-nostril experiments. These experiments highlighted specific activation regions in the external plexiform region and in glomeruli in the lateral part of the bulb, when stimulated by aversive or appetitive odors, respectively. These strong signal activations were non-linear with concentration, and shed light on how chemosensory signals reaching the olfactory epithelium react in response to different cues. Second-level analyses highlighted clear differences among the appetitive, aversive and neutral odor maps; no such differences were evident upon comparing male against female olfactory activation regions.


Subject(s)
Odorants , Olfactory Bulb , Female , Male , Animals , Mice , Olfactory Bulb/diagnostic imaging , Smell , Affect , Magnetic Resonance Imaging
3.
Reumatologia ; 61(2): 130-136, 2023.
Article in English | MEDLINE | ID: mdl-37223365

ABSTRACT

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease. The sex hormones estrogen and testosterone may have an influence on the production of antibodies. In addition, the gut microbiota also shows an effect on the onset and progression of SLE. Hence, the molecular interplay between sex hormones in terms of gender difference, gut microbiota and SLE is being clarified day after day. The aim of this review is to investigate the dynamic relationship of the gut microbiota with sex hormones in systemic lupus erythematosus taking into account the bacterial strains shown to be affected, effects of antibiotics and other factors that affect the gut microbiome, which itself strongly affects the pathogenesis of SLE.

4.
Cell Rep ; 39(3): 110693, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443179

ABSTRACT

γ-oscillatory activity is ubiquitous across brain areas. Numerous studies have suggested that γ-synchrony is likely to enhance the transmission of sensory information. However, direct causal evidence is still lacking. Here, we test this hypothesis in the mouse olfactory system, where local GABAergic granule cells (GCs) in the olfactory bulb shape mitral/tufted cell (MTC) excitatory output from the olfactory bulb. By optogenetically modulating GC activity, we successfully dissociate MTC γ-synchronization from its firing rates. Recording of odor responses in downstream piriform cortex neurons shows that increasing MTC γ-synchronization enhances cortical neuron odor-evoked firing rates, reduces response variability, and improves odor ensemble representation. These gains occur despite a reduction in MTC firing rates. Furthermore, reducing MTC γ-synchronization without changing the MTC firing rates, by suppressing GC activity, degrades piriform cortex odor-evoked responses. These findings provide causal evidence that increased γ-synchronization enhances the transmission of sensory information between two brain regions.


Subject(s)
Olfactory Cortex , Piriform Cortex , Animals , Mice , Neurons/physiology , Odorants , Olfactory Bulb/physiology , Piriform Cortex/physiology
5.
Commun Biol ; 3(1): 150, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32238904

ABSTRACT

Imagine smelling a novel perfume with only one nostril and then smelling it again with the other nostril. Clearly, you can tell that it is the same perfume both times. This simple experiment demonstrates that odor information is shared across both hemispheres to enable perceptual unity. In many sensory systems, perceptual unity is believed to be mediated by inter-hemispheric connections between iso-functional cortical regions. However, in the olfactory system, the underlying neural mechanisms that enable this coordination are unclear because the two olfactory cortices are not topographically organized and do not seem to have homotypic inter-hemispheric mapping. This review presents recent advances in determining which aspects of odor information are processed unilaterally or bilaterally, and how odor information is shared across the two hemispheres. We argue that understanding the mechanisms of inter-hemispheric coordination can provide valuable insights that are hard to achieve when focusing on one hemisphere alone.


Subject(s)
Functional Laterality , Odorants , Olfactory Cortex/physiology , Olfactory Mucosa/innervation , Olfactory Pathways/physiology , Olfactory Perception , Smell , Animals , Discrimination, Psychological , Humans , Memory , Olfactory Bulb/physiology , Olfactory Cortex/cytology , Olfactory Pathways/cytology , Olfactory Receptor Neurons/physiology , Receptors, Odorant/physiology
6.
Article in English | MEDLINE | ID: mdl-32116571

ABSTRACT

The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer's disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.


Subject(s)
GABAergic Neurons/physiology , Glutamic Acid/physiology , Piriform Cortex/cytology , Piriform Cortex/physiology , Animals , Cell Count/methods , Female , GABAergic Neurons/chemistry , Glutamate Decarboxylase/analysis , Glutamate Decarboxylase/physiology , Glutamic Acid/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Piriform Cortex/chemistry , Vesicular Glutamate Transport Protein 2/analysis , Vesicular Glutamate Transport Protein 2/physiology
7.
Elife ; 92020 02 07.
Article in English | MEDLINE | ID: mdl-32031520

ABSTRACT

Whether neurons encode information through their spike rates, their activity times or both is an ongoing debate in systems neuroscience. Here, we tested whether humans can discriminate between a pair of temporal odor mixtures (TOMs) composed of the same two components delivered in rapid succession in either one temporal order or its reverse. These TOMs presumably activate the same olfactory neurons but at different times and thus differ mainly in the time of neuron activation. We found that most participants could hardly discriminate between TOMs, although they easily discriminated between a TOM and one of its components. By contrast, participants succeeded in discriminating between the TOMs when they were notified of their successive nature in advance. We thus suggest that the time of glomerulus activation can be exploited to extract odor-related information, although it does not change the odor perception substantially, as should be expected from an odor code per se.


Subject(s)
Models, Neurological , Olfactory Bulb/physiology , Olfactory Perception/physiology , Adolescent , Adult , Female , Humans , Male , Odorants , Time Factors , Young Adult
9.
Chem Senses ; 44(9): 693-703, 2019 10 26.
Article in English | MEDLINE | ID: mdl-31665762

ABSTRACT

Computational prediction of how strongly an olfactory receptor (OR) responds to various odors can help in bridging the widening gap between the large number of receptors that have been sequenced and the small number of experiments measuring their responses. Previous efforts in this area have predicted the responses of a receptor to some odors, using the known responses of the same receptor to other odors. Here, we present a method to predict the responses of a receptor without any known responses by using available data about the responses of other conspecific receptors and their sequences. We applied this method to ORs in insects Drosophila melanogaster (both adult and larva) and Anopheles gambiae and to mouse and human ORs. We found the predictions to be in significant agreement with the experimental measurements. The method also provides clues about the response-determining positions within the receptor sequences.


Subject(s)
Receptors, Odorant/metabolism , Amino Acid Sequence , Animals , Anopheles , Drosophila melanogaster/growth & development , Humans , Larva/metabolism , Mice , Receptors, Odorant/chemistry , Sequence Alignment
10.
Sci Rep ; 9(1): 1602, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733509

ABSTRACT

In many sensory systems, different sensory features are transmitted in parallel by several different types of output neurons. In the mouse olfactory bulb, there are only two output neuron types, the mitral and tufted cells (M/T), which receive similar odor inputs, but they are believed to transmit different odor characteristics. How these two neuron types deliver different odor information is unclear. Here, by combining electrophysiology and optogenetics, it is shown that distinct inhibitory networks modulate M/T cell responses differently. Overall strong lateral inhibition was scarce, with most neurons receiving lateral inhibition from a handful of unorganized surrounding glomeruli (~5% on average). However, there was a considerable variability between different neuron types in the strength and frequency of lateral inhibition. Strong lateral inhibition was mostly found in neurons locked to the first half of the respiration cycle. In contrast, weak inhibition arriving from many surrounding glomeruli was relatively more common in neurons locked to the late phase of the respiration cycle. Proximal neurons could receive different levels of inhibition. These results suggest that there is considerable diversity in the way M/T cells process odors so that even neurons that receive the same odor input transmit different odor information to the cortex.


Subject(s)
Neural Inhibition , Neurons/cytology , Olfactory Bulb/physiology , Animals , Female , Male , Mice
11.
Neuron ; 99(4): 800-813.e6, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30078580

ABSTRACT

Sensory input reaching the brain from bilateral and offset channels is nonetheless perceived as unified. This unity could be explained by simultaneous projections to both hemispheres, or inter-hemispheric information transfer between sensory cortical maps. Odor input, however, is not topographically organized, nor does it project bilaterally, making olfactory perceptual unity enigmatic. Here we report a circuit that interconnects mirror-symmetric isofunctional mitral/tufted cells between the mouse olfactory bulbs. Connected neurons respond to similar odors from ipsi- and contra-nostrils, whereas unconnected neurons do not respond to odors from the contralateral nostril. This connectivity is likely mediated through a one-to-one mapping from mitral/tufted neurons to the ipsilateral anterior olfactory nucleus pars externa, which activates the mirror-symmetric isofunctional mitral/tufted neurons glutamatergically. This circuit enables sharing of odor information across hemispheres in the absence of a cortical topographical organization, suggesting that olfactory glomerular maps are the equivalent of cortical sensory maps found in other senses.


Subject(s)
Action Potentials/physiology , Mirror Neurons/physiology , Odorants , Olfactory Bulb/physiology , Olfactory Pathways/physiology , Smell/physiology , Animals , Female , Male , Mice , Mice, Inbred CBA , Mice, Transgenic , Mirror Neurons/chemistry , Olfactory Bulb/chemistry , Olfactory Bulb/cytology , Olfactory Pathways/chemistry , Olfactory Pathways/cytology , Random Allocation
12.
PLoS One ; 12(9): e0185329, 2017.
Article in English | MEDLINE | ID: mdl-28945824

ABSTRACT

The molecular receptive range (MRR) of a mammalian odorant receptor (OR) is the set of odorant structures that activate the OR, while the distribution of these odorant structures across odor space is the tuning breadth of the OR. Variation in tuning breadth is thought to be an important property of ORs, with the MRRs of these receptors varying from narrowly to broadly tuned. However, defining the tuning breadth of an OR is a technical challenge. For practical reasons, a screening panel that broadly covers odor space must be limited to sparse coverage of the many potential structures in that space. When screened with such a panel, ORs with different odorant specificities, but equal tuning breadths, might appear to have different tuning breadths due to chance. We hypothesized that ORs would maintain their tuning breadths across distinct odorant panels. We constructed a new screening panel that was broadly distributed across an estimated odor space and contained compounds distinct from previous panels. We used this new screening panel to test several murine ORs that were previously characterized as having different tuning breadths. ORs were expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. MOR256-17, an OR previously characterized as broadly tuned, responded to nine novel compounds from our new screening panel that were structurally diverse and broadly dispersed across an estimated odor space. MOR256-22, an OR previously characterized as narrowly tuned, responded to a single novel compound that was structurally similar to a previously known ligand for this receptor. MOR174-9, a well-characterized receptor with a narrowly tuned MRR, did not respond to any novel compounds in our new panel. These results support the idea that variation in tuning breadth among these three ORs is not an artifact of the screening protocol, but is an intrinsic property of the receptors.


Subject(s)
Odorants , Receptors, Odorant/physiology , Animals , Drug Evaluation, Preclinical , Electrophysiological Phenomena , Female , Humans , Ligands , Mice , Oocytes/metabolism , Patch-Clamp Techniques , Receptors, Odorant/drug effects , Receptors, Odorant/genetics , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Smell/drug effects , Smell/genetics , Smell/physiology , Structure-Activity Relationship , Xenopus laevis
13.
J Neurochem ; 134(1): 47-55, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25772782

ABSTRACT

Mammals deploy a large array of odorant receptors (ORs) to detect and distinguish a vast number of odorant molecules. ORs vary widely in the type of odorant structures recognized and in the breadth of molecular receptive range (MRR), with some ORs recognizing a small group of closely related molecules and other ORs recognizing a wide range of structures. While closely related ORs have been shown to have similar MRRs, the functional relationships among less closely related ORs are unclear. We screened a small group of ORs with a diverse odorant panel to identify a new odorant-OR pairing (unsaturated aldehydes and MOR263-3). We then extensively screened MOR263-3 and a series of additional MORs related to MOR263-3 in various ways. MORs related by phylogenetic analysis (several other members of the MOR263 subfamily) had MRRs that overlapped with the MRR of MOR263-3, even with amino acid identity as low as 48% (MOR263-2). MOR171-17, predicted to be functionally related to MOR263-3 by an alternative bioinformatic analysis, but with only 39% amino acid identity, had a distinct odorant specificity. Our results support the use of phylogenetic analysis to predict functional relationships among ORs with relatively low amino acid identity. We screened a small group of mouse odorant receptors (MORs) with a diverse odorant panel to identify a new odorant-OR pairing (unsaturated aldehydes and MOR263-3), then extensively screened a series of additional MORs related to MOR263-3 in various ways. MORs related by phylogenetic analysis had odorant specificities that overlapped with that of MOR263-3, but MOR171-17, predicted to be functionally related to MOR263-3 by an alternative bioinformatic analysis, had a distinct odorant specificity.


Subject(s)
Odorants , Receptors, Odorant/physiology , Smell/physiology , Animals , Female , Humans , Mice , Xenopus laevis
14.
Annu Rev Neurosci ; 37: 363-85, 2014.
Article in English | MEDLINE | ID: mdl-24905594

ABSTRACT

How is sensory information represented in the brain? A long-standing debate in neural coding is whether and how timing of spikes conveys information to downstream neurons. Although we know that neurons in the olfactory bulb (OB) exhibit rich temporal dynamics, the functional relevance of temporal coding remains hotly debated. Recent recording experiments in awake behaving animals have elucidated highly organized temporal structures of activity in the OB. In addition, the analysis of neural circuits in the piriform cortex (PC) demonstrated the importance of not only OB afferent inputs but also intrinsic PC neural circuits in shaping odor responses. Furthermore, new experiments involving stimulation of the OB with specific temporal patterns allowed for testing the relevance of temporal codes. Together, these studies suggest that the relative timing of neuronal activity in the OB conveys odor information and that neural circuits in the PC possess various mechanisms to decode temporal patterns of OB input.


Subject(s)
Brain Mapping , Neurons/physiology , Olfactory Pathways/physiology , Olfactory Perception/physiology , Animals , Humans , Models, Neurological
15.
Nat Neurosci ; 16(7): 949-57, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23685720

ABSTRACT

Odor stimulation evokes complex spatiotemporal activity in the olfactory bulb, suggesting that both the identity of activated neurons and the timing of their activity convey information about odors. However, whether and how downstream neurons decipher these temporal patterns remains unknown. We addressed this question by measuring the spiking activity of downstream neurons while optogenetically stimulating two foci in the olfactory bulb with varying relative timing in mice. We found that the overall spike rates of piriform cortex neurons (PCNs) were sensitive to the relative timing of activation. Posterior PCNs showed higher sensitivity to relative input times than neurons in the anterior piriform cortex. In contrast, olfactory bulb neurons rarely showed such sensitivity. Thus, the brain can transform a relative time code in the periphery into a firing rate-based representation in central brain areas, providing evidence for the relevance of a relative time-based code in the olfactory bulb.


Subject(s)
Neurons/physiology , Olfactory Bulb/physiology , Olfactory Pathways/cytology , Olfactory Pathways/physiology , Smell/physiology , Action Potentials/physiology , Animals , Brain Mapping , Channelrhodopsins , Discrimination, Psychological/physiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition/physiology , Odorants , Olfactory Marker Protein/genetics , Olfactory Marker Protein/metabolism , Optogenetics , Patch-Clamp Techniques , T-Box Domain Proteins/genetics , Time Factors
17.
J Neurochem ; 121(6): 881-90, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22443178

ABSTRACT

Mammals employ large numbers of odorant receptors to sample and identify volatile chemicals in the environment. These receptors are thought to vary not only in specificity for particular odorants, but also in breadth of tuning. That is, some odorant receptors are narrowly focused on a few closely related structures, while other odorant receptors may be 'broadly tuned', responding to a wide variety of odorant structures. In this study, we have performed a detailed examination the mouse odorant receptor MOR256-17, demonstrating that this receptor is broadly tuned. This receptor responds to odorant structures that span a significant portion of a multi-dimensional odor space. However, we found that broad tuning was not a defining characteristic of other members the MOR256 subfamily. Two additional members of this odorant receptor subfamily (MOR256-8 and MOR256-22) were more narrowly focused on small sets of odorant structures. Interestingly, the receptive range of MOR256-17 encompassed a variety of nitrotoluenes, including various trinitrotoluene synthesis intermediates, degradation products and trinitrotoluene itself, suggesting the potential utility of odorant receptors in the development of sensing technologies for the detection of explosives and other forms of contraband.


Subject(s)
Explosive Agents , Receptors, Odorant/metabolism , Toluene , Trinitrotoluene , Animals , Electrophysiology , Mice , Substrate Specificity
18.
J Neurosci ; 30(27): 9017-26, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20610736

ABSTRACT

Odor identity is coded in spatiotemporal patterns of neural activity in the olfactory bulb. Here we asked whether meaningful olfactory information could also be read from the global olfactory neural population response. We applied standard statistical methods of dimensionality-reduction to neural activity from 12 previously published studies using seven different species. Four studies reported olfactory receptor activity, seven reported glomerulus activity, and one reported the activity of projection-neurons. We found two linear axes of neural population activity that accounted for more than half of the variance in neural response across species. The first axis was correlated with the total sum of odor-induced neural activity, and reflected the behavior of approach or withdrawal in animals, and odorant pleasantness in humans. The second and orthogonal axis reflected odorant toxicity across species. We conclude that in parallel with spatiotemporal pattern coding, the olfactory system can use simple global computations to read vital olfactory information from the neural population response.


Subject(s)
Models, Neurological , Neurons/physiology , Olfactory Bulb/cytology , Olfactory Perception/physiology , Action Potentials , Adult , Computer Simulation , Databases, Factual/statistics & numerical data , Female , Humans , Male , Odorants , Predictive Value of Tests , Smell/physiology , Statistics as Topic , Young Adult
19.
PLoS Comput Biol ; 6(4): e1000740, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20418961

ABSTRACT

A primary goal for artificial nose (eNose) technology is to report perceptual qualities of novel odors. Currently, however, eNoses primarily detect and discriminate between odorants they previously "learned". We tuned an eNose to human odor pleasantness estimates. We then used the eNose to predict the pleasantness of novel odorants, and tested these predictions in naïve subjects who had not participated in the tuning procedure. We found that our apparatus generated odorant pleasantness ratings with above 80% similarity to average human ratings, and with above 90% accuracy at discriminating between categorically pleasant or unpleasant odorants. Similar results were obtained in two cultures, native Israeli and native Ethiopian, without retuning of the apparatus. These findings suggest that unlike in vision and audition, in olfaction there is a systematic predictable link between stimulus structure and stimulus pleasantness. This goes in contrast to the popular notion that odorant pleasantness is completely subjective, and may provide a new method for odor screening and environmental monitoring, as well as a critical building block for digital transmission of smell.


Subject(s)
Algorithms , Electronics/methods , Models, Biological , Odorants/analysis , Olfactory Perception , Adult , Artificial Intelligence , Culture , Discrimination, Psychological , Electronics/instrumentation , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Humans , Middle Aged , Molecular Conformation , Oils, Volatile/chemistry , Reproducibility of Results
20.
Curr Opin Neurobiol ; 18(4): 438-44, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18824102

ABSTRACT

Olfaction consists of a set of transforms from a physical space of odorant molecules, through a neural space of information processing, and into a perceptual space of smell. Elucidating the rules governing these transforms depends on establishing valid metrics for each of the three spaces. Here we first briefly review the perceptual and neural spaces, and then concentrate on the physical space of odorant molecules. We argue that the lack of an agreed-upon odor metric poses a significant obstacle toward understanding the neurobiology of olfaction, and suggest two alternative odor metrics as possible solutions.


Subject(s)
Discrimination, Psychological/physiology , Odorants/analysis , Olfactory Perception/physiology , Smell/physiology , Animals , Humans , Models, Biological , Psychophysics/methods , Sensory Thresholds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...