Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pathol ; 261(1): 19-27, 2023 09.
Article in English | MEDLINE | ID: mdl-37403270

ABSTRACT

Tumor budding (TB) is a strong biomarker of poor prognosis in colorectal cancer and other solid cancers. TB is defined as isolated single cancer cells or clusters of up to four cancer cells at the invasive tumor front. In areas with a large inflammatory response at the invasive front, single cells and cell clusters surrounding fragmented glands are observed appearing like TB. Occurrence of these small groups is referred to as pseudobudding (PsB), which arises due to external influences such as inflammation and glandular disruption. Using a combination of orthogonal approaches, we show that there are clear biological differences between TB and PsB. TB is representative of active invasion by presenting features of epithelial-mesenchymal transition and exhibiting increased deposition of extracellular matrix within the surrounding tumor microenvironment (TME), whereas PsB represents a reactive response to heavy inflammation where increased levels of granulocytes within the surrounding TME are observed. Our study provides evidence that areas with a strong inflammatory reaction should be avoided in the routine diagnostic assessment of TB. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms , Humans , Epithelial-Mesenchymal Transition , Inflammation , United Kingdom , Tumor Microenvironment
2.
Front Med (Lausanne) ; 8: 692341, 2021.
Article in English | MEDLINE | ID: mdl-34660619

ABSTRACT

Familial melanoma accounts for 10% of cases, being CDKN2A the main high-risk gene. However, the mechanisms underlying melanomagenesis in these cases remain poorly understood. Our aim was to analyze the transcriptome of melanocyte-keratinocyte co-cultures derived from healthy skin from familial melanoma patients vs. controls, to unveil pathways involved in melanoma development in at-risk individuals. Accordingly, primary melanocyte-keratinocyte co-cultures were established from the healthy skin biopsies of 16 unrelated familial melanoma patients (8 CDKN2A mutant, 8 CDKN2A wild-type) and 7 healthy controls. Whole transcriptome was captured using the SurePrint G3 Human Microarray. Transcriptome analyses included: differential gene expression, functional enrichment, and protein-protein interaction (PPI) networks. We identified a gene profile associated with familial melanoma independently of CDKN2A germline status. Functional enrichment analysis of this profile showed a downregulation of pathways related to DNA repair and immune response in familial melanoma (P < 0.05). In addition, the PPI network analysis revealed a network that consisted of double-stranded DNA repair genes (including BRCA1, BRCA2, BRIP1, and FANCA), immune response genes, and regulation of chromosome segregation. The hub gene was BRCA1. In conclusion, the constitutive deregulation of BRCA1 pathway genes and the immune response in healthy skin could be a mechanism related to melanoma risk.

3.
Nat Protoc ; 16(11): 4945-4962, 2021 11.
Article in English | MEDLINE | ID: mdl-34716449

ABSTRACT

Analysis of three-dimensional patient specimens is gaining increasing relevance for understanding the principles of tissue structure as well as the biology and mechanisms underlying disease. New technologies are improving our ability to visualize large volume of tissues with subcellular resolution. One resource often overlooked is archival tissue maintained for decades in hospitals and research archives around the world. Accessing the wealth of information stored within these samples requires the use of appropriate methods. This tutorial introduces the range of sample preparation and microscopy approaches available for three-dimensional visualization of archival tissue. We summarize key aspects of the relevant techniques and common issues encountered when using archival tissue, including registration and antibody penetration. We also discuss analysis pipelines required to process, visualize and analyze the data and criteria to guide decision-making. The methods outlined in this tutorial provide an important and sustainable avenue for validating three-dimensional tissue organization and mechanisms of disease.


Subject(s)
Imaging, Three-Dimensional , Specimen Handling
4.
Virchows Arch ; 479(3): 459-469, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33650042

ABSTRACT

Tumor budding is a long-established independent adverse prognostic marker in colorectal cancer, yet methods for its assessment have varied widely. In an effort to standardize its reporting, a group of experts met in Bern, Switzerland, in 2016 to reach consensus on a single, international, evidence-based method for tumor budding assessment and reporting (International Tumor Budding Consensus Conference [ITBCC]). Tumor budding assessment using the ITBCC criteria has been validated in large cohorts of cancer patients and incorporated into several international colorectal cancer pathology and clinical guidelines. With the wider reporting of tumor budding, new issues have emerged that require further clarification. To better inform researchers and health-care professionals on these issues, an international group of experts in gastrointestinal pathology participated in a modified Delphi process to generate consensus and highlight areas requiring further research. This effort serves to re-affirm the importance of tumor budding in colorectal cancer and support its continued use in routine clinical practice.


Subject(s)
Carcinoma/pathology , Cell Movement , Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Pathology, Clinical/standards , Biopsy , Cell Differentiation , Consensus , Delphi Technique , Humans , Neoplasm Invasiveness , Neoplasm Staging , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...