Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cytogenet ; 7: 33, 2014.
Article in English | MEDLINE | ID: mdl-24914406

ABSTRACT

BACKGROUND: Cytogenetic evaluation of products of conception (POC) for chromosomal abnormalities is central to determining the cause of pregnancy loss. We compared the test success rates in various specimen types and the frequencies of chromosomal abnormalities detected by G-banding analysis with those found by Oligo-SNP chromosomal microarray analysis (CMA). We evaluated the benefit of CMA testing in cases of failed culture growth. METHODS: Conventional cytogenetic results of 5457 consecutive POC specimens were reviewed and categorized as placental villi, fetal parts, and unspecified POC tissue. The CMA was performed on 268 cases. Of those, 32 cases had concurrent G-banding results. The remaining 236 cases included 107 cases with culture failure and 129 cases evaluated by CMA alone. RESULTS: The overall POC culture success rate was 75%, with the lowest for fetal parts (37.4%) and the highest for placental villi (81%). The abnormality rate was 58% for placental villi, but only 25% for fetal parts. Of the abnormalities detected, the most common were aneuploidies, including trisomy 16, triploidy, monosomy X, trisomy 22, trisomy 21 and trisomy 15, while the least encountered aneuploidies were trisomy 1, trisomy 19 and monosomies (except monosomy 21). Overall, POC specimens studied by CMA were successful in 89.6% of cases and yielded a 44.6% abnormality rate. CONCLUSIONS: Placental villi yielded higher rates of culture success and a higher percentage of abnormal karyotypes than did other specimen types. The Oligo-SNP CMA method has demonstrated a viable alternative to the G-banding method in view of its advantages in detection of submicroscopic genomic aberrations, shorter turnaround time due to elimination of time required for culture and a higher test success rate.

2.
Mol Cytogenet ; 5: 3, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22248351

ABSTRACT

Spectral karyotyping is a diagnostic tool that allows visualization of chromosomes in different colors using the FISH technology and a spectral imaging system. To assess the value of spectral karyotyping analysis for identifying constitutional supernumerary marker chromosomes or derivative chromosomes at a national reference laboratory, we reviewed the results of 179 consecutive clinical samples (31 prenatal and 148 postnatal) submitted for spectral karyotyping. Over 90% of the cases were requested to identify either small supernumerary marker chromosomes (sSMCs) or chromosomal exchange material detected by G-banded chromosome analysis. We also reviewed clinical indications of those cases with marker chromosomes in which chromosomal origin was identified by spectral karyotyping. Our results showed that spectral karyotyping identified the chromosomal origin of marker chromosomes or the source of derivative chromosomal material in 158 (88%) of the 179 clinical cases; the identification rate was slightly higher for postnatal (89%) compared to prenatal (84%) cases. Cases in which the origin could not be identified had either a small marker chromosome present at a very low level of mosaicism (< 10%), or contained very little euchromatic material. Supplemental FISH analysis confirmed the spectral karyotyping results in all 158 cases. Clinical indications for prenatal cases were mainly for marker identification after amniocentesis. For postnatal cases, the primary indications were developmental delay and multiple congenital anomalies (MCA). The most frequently encountered markers were of chromosome 15 origin for satellited chromosomes, and chromosomes 2 and 16 for non-satellited chromosomes. We were able to obtain pertinent clinical information for 47% (41/88) of cases with an identified abnormal chromosome. We conclude that spectral karyotyping is sufficiently reliable for use and provides a valuable diagnostic tool for establishing the origin of supernumerary marker chromosomes or derivative chromosomal material that cannot be identified with standard cytogenetic techniques.

3.
Am J Med Genet A ; 129A(2): 124-9, 2004 Aug 30.
Article in English | MEDLINE | ID: mdl-15316975

ABSTRACT

We report a 4-year-old female with a de novo complex karyotype with multiple chromosomal rearrangements and a distinctive phenotype. Her medical history is significant for having been a twin born at 35 weeks gestation, breech presentation, with feeding problems and poor growth as an infant, gastroesophageal reflux disease, peripheral pulmonic stenosis, omphalocele, high myopia, and severe mental retardation. She is small for her age with microcephaly, posteriorly sloping forehead, shallow orbits, long palpebral fissures, prominent nose, wide mouth, absent uvula, kyphosis, brachydactyly, bridged palmar crease, and hypertonia. Peripheral blood lymphocytes revealed a karyotype of 46,XX,t(1;12)(p22.3;q21.3),inv(6)(p24q23),t(7;18)(q11.2;q21.2) in all cells. Parental karyotypes and that of her twin were normal. Spectral Karyotyping (SKY) and fluorescence in situ hybridization (FISH) with whole chromosome paints for chromosomes 1, 6, 7, 12, and 18 did not reveal additional rearrangements. Prometaphase G-banding analysis suggested that the "inverted" chromosome 6 might contain a cryptic rearrangement. Although no deletion nor duplication was detected using metaphase comparative genomic hybridization (CGH), multicolor high resolution banding (mBAND) demonstrated a double inversion of chromosome 6, resulting in a final karyotype as above but including der(6)(pter --> p23::q21 --> q22.3::q21 --> p23::q22.3 --> qter).


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Aberrations , Chromosome Disorders/genetics , Chromosomes, Human, Pair 6/genetics , Intellectual Disability/genetics , Phenotype , Black or African American , Child, Preschool , Female , Humans , In Situ Hybridization, Fluorescence , Nucleic Acid Hybridization , Spectral Karyotyping
4.
Cancer Genet Cytogenet ; 144(2): 100-5, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12850371

ABSTRACT

Malignant triton tumor (MTT) is a highly malignant neoplasm, classified as a variant of malignant peripheral nerve sheath tumor (MPNST) with rhabdomyoblastic differentiation. Few cytogenetic studies of MTT have been reported using conventional cytogenetic analysis. Here, we report a comprehensive cytogenetic study of a case of MTT using G-banding, Spectral Karyotyping(), and fluorescence in situ hybridization (FISH) for specific regions. A complex hyperdiploid karyotype with multiple unbalanced translocations was observed: 48 approximately 55,XY,der(7)add(7)(p?)dup(7)[2],der(7) t(7;20)(p22;?)ins(20;19)[5],der(7)ins(8;7)(?;p22q36)t(3;8)t(8;20)[15],-8[5],-8[19],r(8)dup(8), +der(8)r(8;22)[4],-9[9],der(11)t(11;20)(p15;?)ins(20;19)[22],der(12)t(8;12)(q21;p13)[21],der(13) t(3;13)(q25;p11),-17,-19,der(19)t(17;19)(q11.2;q13.1),-20,-22,+4 approximately 7r[cp24]/46,XY[13]. The 1995 International System for Human Cytogenetic Nomenclature was followed where possible. Note that breakpoints were frequently omitted where only SKY information was known for a small part of an involved chromosome. Our analysis revealed some breakpoints in common with those previously reported in MTT, MPNST, and rhabdomyosarcoma, namely 7p22, 7q36, 11p15, 12p13, 13p11.2, 17q11.2, and 19q13.1. FISH showed high increase of copy number for MYC and loss of a single copy for TP53.


Subject(s)
Chromosome Aberrations , Nerve Sheath Neoplasms/genetics , Aged , Aged, 80 and over , Genes, p53 , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...