Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38419618

ABSTRACT

Direct detection of singlet-state oxygen ([1O2]) constitutes the holy grail dosimetric method for type II PDT, a goal that can be quantified using multispectral singlet oxygen dosimetry (MSOLD). However, the short lifetime and extremely weak nature of the singlet oxygen signal produced has given rise to a need to improve MSOLD signal-to-noise ratio. This study examines methods for optimizing MSOLD signal acquisition, specifically employing an orthogonal arrangement between detection and PDT treatment light, consisting of two fiber optics - connected to a 632-nm laser and an InGaAs detector respectively. Light collected by the InGaAs detector is then passed through a filter wheel, where spectral emission measurements are taken at 1200 nm, 1240 nm, 1250 nm, 1270 nm, and 1300 nm. The data, after fitting to the fluorescence background and a gaussian-fit for the singlet oxygen peak, is established for the background-subtracted singlet oxygen emission signal. The MSOLD signal is then compared with the singlet oxygen explicit dosimetry (SOED) results, based on direct measurements of in-vivo light fluence (rate), in-vivo Photofrin concentration, and tissue oxygenation concentration. This study focuses on validating the sensitivity and minimum detectability of MSOLD signal in various in-vitro conditions. Finally, the MSOLD device will be tested in Photofrin-mediated PDT for mice bearing Radiation-Induced Fibrosarcoma (RIF) tumors.

2.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204375

ABSTRACT

We investigate the dynamic behaviour of resonant tunneling diode-photodetectors (RTD-PDs) in which the excitability can be activated by either electrical noise or optical signals. In both cases, we find the characteristics of the stochastic spiking behavior are not only dependent on the biasing positions but also controlled by the intensity of the input perturbations. Additionally, we explore the ability of RTD-PDs to perform optical signal transmission and neuromorphic spike generation simultaneously. These versatile functions indicate the possibility of making use of RTD-PDs for innovative applications, such as optoelectronic neuromorphic circuits for spike-encoded signaling and data processing.

3.
Sci Adv ; 6(13): eaay5195, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32258399

ABSTRACT

Quantum-enhanced optical systems operating within the 2- to 2.5-µm spectral region have the potential to revolutionize emerging applications in communications, sensing, and metrology. However, to date, sources of entangled photons have been realized mainly in the near-infrared 700- to 1550-nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting nanowire single-photon detectors, we demonstrate two-photon interference and polarization-entangled photon pairs at 2090 nm. These results open the 2- to 2.5-µm mid-infrared window for the development of optical quantum technologies such as quantum key distribution in next-generation mid-infrared fiber communication systems and future Earth-to-satellite communications.

4.
Opt Express ; 27(26): 38147-38158, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878586

ABSTRACT

In this work, we show a proof-of-principle benchtop single-photon light detection and ranging (LIDAR) depth imager at 2.3µm, utilizing superconducting nanowire single-photon detectors (SNSPDs). We fabricate and fiber-couple SNSPDs to exhibit enhanced photon counting performance in the mid-infrared. We present characterization results using an optical parametric oscillator source and deploy these detectors in a scanning LIDAR setup at 2.3µm wavelength. This demonstrates the viability of these detectors for future free-space photon counting applications in the mid-infrared where atmospheric absorption and background solar flux are low.

5.
J Low Temp Phys ; 193(3): 196-202, 2018.
Article in English | MEDLINE | ID: mdl-30839694

ABSTRACT

We report on the investigation of titanium nitride (TiN) thin films deposited via atomic layer deposition (ALD) for microwave kinetic inductance detectors (MKID). Using our in-house ALD process, we have grown a sequence of TiN thin films (thickness 15, 30, 60 nm). The films have been characterised in terms of superconducting transition temperature T c , sheet resistance R s and microstructure. We have fabricated test resonator structures and characterised them at a temperature of 300 mK. At 350 GHz, we report an optical noise equivalent power NEP opt ≈ 2.3 × 10 - 15 W / Hz , which is promising for passive terahertz imaging applications.

6.
Opt Lett ; 42(4): 815-818, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28198872

ABSTRACT

We present the generation of quantum-correlated photon pairs and subsequent pump rejection across two silicon-on-insulator photonic integrated circuits. Incoherently cascaded lattice filters are used to provide over 100 dB pass-band to stop-band contrast with no additional external filtering. Photon pairs generated in a microring resonator are successfully separated from the input pump, confirmed by temporal correlations measurements.

7.
J Biophotonics ; 10(2): 320-326, 2017 02.
Article in English | MEDLINE | ID: mdl-27455426

ABSTRACT

This paper presents a novel compact fiberoptic based singlet oxygen near-infrared luminescence probe coupled to an InGaAs/InP single photon avalanche diode (SPAD) detector. Patterned time gating of the single-photon detector is used to limit unwanted dark counts and eliminate the strong photosensitizer luminescence background. Singlet oxygen luminescence detection at 1270 nm is confirmed through spectral filtering and lifetime fitting for Rose Bengal in water, and Photofrin in methanol as model photosensitizers. The overall performance, measured by the signal-to-noise ratio, improves by a factor of 50 over a previous system that used a fiberoptic-coupled superconducting nanowire single-photon detector. The effect of adding light scattering to the photosensitizer is also examined as a first step towards applications in tissue in vivo.


Subject(s)
Fiber Optic Technology , Luminescence , Photosensitizing Agents/chemistry , Singlet Oxygen/analysis , Signal-To-Noise Ratio
8.
Cancers (Basel) ; 8(12)2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27929427

ABSTRACT

Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT-light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([³O2])-to calculate the amount of reacted singlet oxygen ([¹O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [¹O2]rx was compared to SOED-calculated [¹O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [¹O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula.

9.
Sci Rep ; 6: 35240, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27775712

ABSTRACT

We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths.

10.
Opt Express ; 24(13): 13931-8, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410555

ABSTRACT

We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.

11.
Proc SPIE Int Soc Opt Eng ; 96942016 Feb 13.
Article in English | MEDLINE | ID: mdl-27064489

ABSTRACT

An explicit dosimetry model has been developed to calculate the apparent reacted 1O2 concentration ([1O2]rx) in an in-vivo model. In the model, a macroscopic quantity, g, is introduced to account for oxygen perfusion to the medium during PDT. In this study, the SOED model is extended for PDT treatment in phantom conditions where vasculature is not present; the oxygen perfusion is achieved through the air-phantom interface instead. The solution of the SOED model is obtained by solving the coupled photochemical rate equations incorporating oxygen perfusion through the air-liquid interface. Experiments were performed for two photosensitizers (PS), Rose Bengal (RB) and Photofrin (PH), in solution, using SOED and SOLD measurements to determine both the instantaneous [1O2] as well as cumulative [1O2]rx concentrations, where [1O2] rx = (1/τΔ) · ∫[1O2]dt. The PS concentrations varied between 10 and 100 mM for RB and ~200 mM for Photofrin. The resulting magnitudes of [1O2] were compared between SOED and SOLD.

12.
Nat Commun ; 6: 8955, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26597223

ABSTRACT

Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

13.
Nano Lett ; 15(2): 819-22, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25575021

ABSTRACT

Superconducting nanowire single photon detectors are rapidly emerging as a key infrared photon-counting technology. Two front-side-coupled silver dipole nanoantennas, simulated to have resonances at 1480 and 1525 nm, were fabricated in a two-step process. An enhancement of 50 to 130% in the system detection efficiency was observed when illuminating the antennas. This offers a pathway to increasing absorption into superconducting nanowires, creating larger active areas, and achieving more efficient detection at longer wavelengths.

14.
Opt Express ; 22(6): 6734-48, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24664022

ABSTRACT

We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

15.
Nat Commun ; 4: 2228, 2013.
Article in English | MEDLINE | ID: mdl-23887066

ABSTRACT

Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

16.
Opt Express ; 21(7): 8904-15, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571981

ABSTRACT

This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime.


Subject(s)
Image Enhancement/instrumentation , Photometry/instrumentation , Telecommunications/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Photons
17.
Opt Express ; 21(4): 5005-13, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23482033

ABSTRACT

Direct monitoring of singlet oxygen (¹O2) luminescence is a particularly challenging infrared photodetection problem. ¹O2, an excited state of the oxygen molecule, is a crucial intermediate in many biological processes. We employ a low noise superconducting nanowire single-photon detector to record ¹O2 luminescence at 1270 nm wavelength from a model photosensitizer (Rose Bengal) in solution. Narrow band spectral filtering and chemical quenching is used to verify the ¹O2 signal, and lifetime evolution with the addition of protein is studied. Furthermore, we demonstrate the detection of ¹O2 luminescence through a single optical fiber, a marked advance for dose monitoring in clinical treatments such as photodynamic therapy.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Fiber Optic Technology/instrumentation , Luminescent Measurements/instrumentation , Nanotubes/radiation effects , Photometry/instrumentation , Singlet Oxygen/analysis , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Light , Nanotubes/chemistry , Photons
18.
Opt Express ; 21(1): 893-902, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23388983

ABSTRACT

Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD.

19.
Opt Express ; 20(25): 27510-9, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23262701

ABSTRACT

Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-µm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-µm quantum channels.


Subject(s)
Lasers , Photons , Quantum Dots , Telecommunications/instrumentation , Electromagnetic Fields , Electronics/methods , Niobium/chemistry , Oxides/chemistry
20.
Nature ; 491(7424): 421-5, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23151585

ABSTRACT

Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...