Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 21139, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036635

ABSTRACT

This study introduces a novel system of solid electrolytes for electrical double-layer capacitors (EDLCs) utilizing biopolymer electrolytes with high energy density comparable to NiMH batteries. To prepare the electrolytes, a proton-conducting plasticized chitosan: poly(2-oxazoline) (POZ) with good film-forming properties was fabricated using a solution casting technique, and ammonium trifluoromethanesulfonate (NH4CF3SO3) salt was employed as a proton provider. Various glycerol concentrations were incorporated into the chitosan:POZ: NH4CF3SO3 system to enhance the ionic conductivity and fully transparent films were obtained. The impedance technique was utilized to determine the conductivity and measure the diffusion coefficient, mobility, and number density of ions. The electrochemical measurements, including linear sweep voltammetry (LSV) and cyclic voltammetry (CV), validated the high performance of the system. The EDLC was examined using galvanostatic charge-discharge (GCD) equipment, and the results revealed an energy density of 43 Wh/kg, specific capacitance of 300 F/g, and power density of 1800 W/kg over 500 cycles. These findings suggest that it is plausible to develop EDLCs that resemble batteries, making them a more desirable energy storage option for the industry.

2.
Cureus ; 15(7): e42026, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37593283

ABSTRACT

Background Zinc plays a crucial role in human nutrition and various biochemical processes, making it indispensable for all life forms. Therefore, it is important to address low zinc levels, particularly among women, to prevent potential health issues. Objective This study aimed to evaluate the serum zinc levels of female patients in Sulaymaniyah, Iraq. Methods This retrospective cross-sectional study included a total of 299 patients, ranging in age from 16 to 48 years, who sought medical care at Baxshin Hospital in Sulaymaniyah Governorate, Iraq, between October 2022 and April 2023. The biochemical test was conducted to screen the patient's blood samples for serum zinc levels. Results Among 299 patients, 99 individuals had low zinc levels, 11 had high zinc levels, and 189 exhibited normal zinc levels. The analysis revealed a significant difference between low, normal, and high serum zinc levels, as evidenced by a p-value of <0.05. In terms of age-related variations, individuals under 20 years old had an average serum zinc level of 121.4 µg/dL. However, those between 21 and 30 years old demonstrated the highest average serum zinc level of 153.6 µg/dL, followed by 135 µg/dL for individuals aged 31-40, and 119 µg/dL for those above 40 years old. Conclusion These findings indicate that serum zinc levels may vary based on the age group of individuals. Consequently, further research is needed to explore the implications of these variations and establish appropriate strategies to address zinc deficiency among women in Sulaymaniyah.

3.
Ann Med Surg (Lond) ; 85(7): 3359-3363, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37427205

ABSTRACT

Despite being very infectious and fatal, the coronavirus disease 2019 (COVID-19) lacks a reliable and practical biomarker to assess how serious it will be. Aim: The current study aims to conclude the possibility of C-reactive protein (CRP) level serving as a biomarker for early prediction of COVID-19 infections. Methods: In this retrospective cross-sectional study, 88 people participated who were infected with COVID-19, aged from 25 to 79 years old. Compare the CRP test range of all samples from patients who visited the hospital between January and April 2022. Results: All participants were confirmed to have COVID-19 through nasopharyngeal swab analysis and real-time polymerase chain reaction real-time polymerase chain reaction testing. Results showed that the majority of infected individuals had elevated CRP levels. A P-value of less than 0.05 indicated a significant difference in CRP levels between alive and dead patients. No significant difference in CRP levels was found between male and female patients. The average CRP level of deceased patients was 137.79 mg/l, while the average CRP level of survivors was 14.37 mg/l. The median interquartile range of deceased patients was also found to be significantly higher compared to survivors. Conclusion: In conclusion, serum CRP levels potentially predict the severity and development of sickness in patients with COVID-19 infections.

4.
Clin Pract ; 12(6): 1001-1008, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36547111

ABSTRACT

BACKGROUND: Coronaviruses (COV) are a large family of viruses that cause infections ranging from the common cold to more serious diseases. Mild to severe respiratory illnesses have been linked to coronavirus disease 2019 (COVID-19), which has been classified as a pandemic disease by the World Health Organization. It has been demonstrated that the severity of COVID-19 is highly positively linked with hypocalcemia. Furthermore, calcium imbalances among other electrolytes are linked to the prognosis of COVID-19. OBJECTIVES: This study demonstrates a connection between serum calcium levels and COVID-19 as biomedical indicators of COVID-19 infections in Sulaymaniyah city, Iraq. METHODS: A cross-sectional study was conducted at Baxshin Hospital for about two months from February 2022 to April 2022. The work was conducted with a total of 40 patients including 22 males and 18 females. The patients' ages ranged from 22 to 80 years old. By analyzing a sample from a nasopharyngeal swab and performing real-time reverse transcription-polymerase chain reaction (RT-PCR), all of the patients tested positive as having COVID-19 infection. Serum calcium was determined from the blood samples of the patients in order to evaluate their serum calcium levels. The statistical package for social science (SPSS) was utilized to examine the obtained data. RESULTS: The study revealed a level of calcium between 6.10 and 9.86 mg/dL in male and female patients. The majority of the female patients (61%) displayed low levels of serum calcium, and 33% of the males had a low level of calcium. It can be seen that the highest rate of male patients (66.6%) exhibited a normal level of serum calcium, while 33.3% showed decreased serum calcium. Based on gender and age groups, a statistically significant difference in calcium levels was observed. CONCLUSIONS: This study discovered that infection with COVID-19 has some significant laboratory abnormalities, including hypocalcemia, showing that serum calcium might be employed as a prognostic marker in the clinic.

5.
Crit Rev Anal Chem ; : 1-17, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36580293

ABSTRACT

Food safety issue is becoming an international challenge for human health owing to the presence of contaminants. In this context, reliable, rapid, and sensitive detecting technology is extremely demanded to establish food safety assurance systems. MOFs (Metal-organic frameworks) are a new type of porous crystalline material with particular physical and chemical characteristics presented in food safety requirements. (Bio)sensors driven MOF materials have emerged as a promising alternative and complementary analytical techniques, owing to their great specific area, high porosity, and uniform and fine-tunable pore buildings. Nevertheless, the insufficient stability and electrical conductivity of classical MOFs limit their utilization. Employing graphene-derived nanomaterials with high functional elements as patterns for the MOF materials not only improves the structural instability and poor conductivity but also impedes the restacking and aggregation between graphene layers, thus significantly extending the MOFs application. A review of MOFs-graphene-based material used in food contamination detection is urgently needed for encouraging the advance of this field. Herein, this paper systematically outlines current breakthroughs in MOF-graphene-based nanoprobes, outlines their principles, and illustrates their employments in identifying mycotoxins, heavy metal ions, pathogens, antibiotics, and pesticides, referring to their multiplexing and sensitivity ability. The challenges and limitations of applying MOF-graphene composite for precise and efficient assessment of food were also debated. This paper would maybe offer some inspired concepts for an upcoming study on MOF-based composites in the food security context.

6.
Materials (Basel) ; 15(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36013716

ABSTRACT

The attention to a stable and ionic conductive electrolyte is driven by the limitations of liquid electrolytes, particularly evaporation and leakage, which restrain their widespread use for electrochemical device applications. Solid polymer electrolyte (SPE) is considered to be a potential alternative since it possesses high safety compared to its counterparts. However, it still suffers from low device efficiency due to an incomplete understanding of the mechanism of ion transport parameters. Here, we present a simple in situ solution casting method for the production of polymer-based electrolytes using abundantly available methylcellulose (MC) doped at different weight percentages of potassium thiocyanate (KSCN) salt. Fourier transform infrared (FTIR), and electrochemical impedance spectroscopy (EIS) methods were used to characterize the prepared samples. Based on EIS simulation and FTIR deconvolution associated with the SCN anion peak, various ion transport parameters were determined. The host MC medium and KSCN salt have a strong interaction, which was evident from both peak shifting and intensity alteration of FTIR spectra. From the EIS modeling, desired electric circuits correlated with ion movement and chain polarization were drawn. The highest ionic conductivity of 1.54 × 10-7 S cm-1 is determined from the fitted EIS curve for the film doped with 30 wt.% of KSCN salt. From the FTIR deconvoluted peak, free ions, ions in contact with one another, and ion aggregates were separated. The extracted ion transport parameters from the EIS method and FTIR spectra of the SCN anion band confirm that both increased carrier concentration and their mobility were crucial in improving the overall conductivity of the electrolyte. The dielectric investigations were further used to understand the conductivity of the films. High dielectric constants were observed at low frequencies for all MC:KSCN systems. The dispersion with a high dielectric constant in the low-frequency band is ascribed to the dielectric polarization. The wide shift of M″ peak towards the high frequency was evidenced by the MC-based electrolyte impregnated with 30 wt.% of KSCN salt, revealing the improved ionic movement assisted with chain segmental motion. The AC conductivity pattern was influenced by salt concentration.

7.
Membranes (Basel) ; 12(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36005684

ABSTRACT

Stable and ionic conducting electrolytes are needed to make supercapacitors more feasible, because liquid electrolytes have leakage problems and easily undergo solvent evaporation. Polymer-based electrolytes meet the criteria, yet they lack good efficiency due to limited segmental motion. Since metal complexes have crosslinking centers that can be coordinated with the polymer segments, they are regarded as an adequate method to improve the performance of the polymer-based electrolytes. To prepare plasticized proton conducting polymer composite (PPC), a simple and successful process was used. Using a solution casting process, methylcellulose and dextran were blended and impregnated with ammonium thiocyanate and zinc metal complex. A range of electrochemical techniques were used to analyze the PPC, including transference number measurement (TNM), linear sweep voltammetry (LSV), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The ionic conductivity of the prepared system was found to be 3.59 × 10-3 S/cm using the EIS method. The use of glycerol plasticizer improves the transport characteristics, according to the findings. The carrier species is found to have ionic mobility of 5.77 × 10-5 cm2 V-1 s-1 and diffusion coefficient of 1.48 × 10-6 cm2 s-1 for the carrier density 3.4 × 1020 cm-3. The TNM revealed that anions and cations were the predominant carriers in electrolyte systems, with an ionic transference value of 0.972. The LSV approach demonstrated that, up to 2.05 V, the film was stable, which is sufficient for energy device applications. The prepared PPC was used to create an electrical double-layer capacitor (EDLC) device. The CV plot exhibited the absence of Faradaic peaks in the CV plot, making it practically have a rectangular form. Using the GCD experiment, the EDLC exhibited low equivalence series resistance of only 65 Ω at the first cycle. The average energy density, power density, and specific capacitance values were determined to be 15 Wh/kg, 350 W/kg, and 128 F/g, respectively.

8.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012415

ABSTRACT

A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer) (MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR) and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and electrical properties. The FTIR spectra verify the interactions between the electrolyte components. Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs (CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity of 1.45 × 10-3 S cm-1. Moreover, for other transport parameters, the mobility (µ), number density (n), and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement (TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples (MDLG3) had 3.0 V as the voltage stability of the electrolyte.


Subject(s)
Glycerol , Plasticizers , Biopolymers/chemistry , Electrolytes/chemistry , Ion Transport , Ions , Lithium
9.
Front Chem ; 10: 868794, 2022.
Article in English | MEDLINE | ID: mdl-35832463

ABSTRACT

For the first time, biocompatible and biodegradable Ta-metal organic framework (MOF)/polyether block amide (PEBA) fibrous polymeric nanostructures were synthesized by ultrasonic and electrospinning routes in this study. The XRD peaks of products were wider, which is due to the significant effect of the ultrasonic and electrospinning methods on the final product. The adsorption/desorption behavior of the nanostructures is similar to that of the third type of isotherm series, which showed mesoporous behavior for the products. The sample has uniform morphology without any evidence of agglomeration. Since the adsorption and trapping of gaseous pollutants are very important, the application of the final Ta-MOF/PEBA fibrous polymeric nanostructures was investigated for CH4 adsorption. In order to achieve the optimal conditions of experiments and also systematic studies of the parameters, fractional factorial design was used. The results showed that by selecting temperature 40°C, time duration 35 min, and pressure 3 bar, the CH4 gas adsorption rate was near 4 mmol/g. Ultrasonic and electrospinning routes as well as immobilization of Ta-MOF in the PEBA fibrous network affect the performance of the final products for CH4 gas adsorption.

10.
Membranes (Basel) ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323759

ABSTRACT

This work presents the fabrication of polymer electrolyte membranes (PEMs) that are made of polyvinyl alcohol-methylcellulose (PVA-MC) doped with various amounts of ammonium iodide (NH4I). The structural and electrical properties of the polymer blend electrolyte were performed via the acquisition of Fourier Transform Infrared (FTIR) and electrical impedance spectroscopy (EIS), respectively. The interaction among the components of the electrolyte was confirmed via the FTIR approach. Electrical impedance spectroscopy (EIS) showed that the whole conductivity of complexes of PVA-MC was increased beyond the addition of NH4I. The application of EEC modeling on experimental data of EIS was helpful to calculate the ion transport parameters and detect the circuit elements of the films. The sample containing 40 wt.% of NH4I salt exhibited maximum ionic conductivity (7.01 × 10-8) S cm-1 at room temperature. The conductivity behaviors were further emphasized from the dielectric study. The dielectric constant, ε' and loss, ε'' values were recorded at high values within the low-frequency region. The peak appearance of the dielectric relaxation analysis verified the non-Debye type of relaxation mechanism was clarified via the peak appearance of the dielectric relaxation. For further confirmation, the transference number measurement (TNM) of the PVA-MC-NH4I electrolyte was analyzed in which ions were primarily entities for the charge transfer process. The linear sweep voltammetry (LSV) shows a relatively electrochemically stable electrolyte where the voltage was swept linearly up to 1.6 V. Finally, the sample with maximum conductivity, ion dominance of tion and relatively wide breakdown voltage were found to be 0.88 and 1.6 V, respectively. As the ions are the majority charge carrier, this polymer electrolyte could be considered as a promising candidate to be used in electrochemical energy storage devices for example electrochemical double-layer capacitor (EDLC) device.

11.
Materials (Basel) ; 15(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35329595

ABSTRACT

In the present article, a simple technique is provided for the fabrication of a polymer electrolyte system composed of polyvinyl chloride (PVC) and doped with varying content of ammonium iodide (NH4I) salt using solution-casting methodology. The influences of NH4I on the structural, electrochemical, and electrical properties of PVC have been investigated using X-ray diffraction, electrochemical impedance spectroscopy (EIS), and dielectric properties. The X-ray study reveals the amorphous nature of the polymer-salt complex. The EIS measurement revealed an ionic conductivity of 5.57 × 10-10 S/cm for the electrolyte containing 10 wt.% of salt. Our hypothesis is provided, which demonstrated the likelihood of designing highly resistive solid electrolytes using the concept of a polymer electrolyte. Here, the results showed that the resistivity of the studied samples is not dramatically decreased with increasing NH4I. Bode plots distinguish the decrease in resistance or impedance with increasing salt contents. Dielectric measurements revealed a decrease in the dielectric constant with the increase of NH4I content in the PVC polymer. The relaxation time and dielectric properties of the electrolytes confirmed their non-Debye type behavior. This pattern has been validated by the existence of an incomplete semicircle in the Argand plot. Insulation materials with low εr have found widespread applications in electronic devices due to the reduction in delay, power dissipation, and crosstalk. In addition, an investigation of real and imaginary parts of electric modulus leads to the minimized electrode polarization being reached.

12.
Cureus ; 14(11): e31982, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36589200

ABSTRACT

BACKGROUND: Acute respiratory failure develops quickly in patients with a severe form of coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome Coronavirus 2 (SARS­CoV­2). Despite being commonly acknowledged as a measure of the body's overall iron storage, ferritin's predictive value is associated with COVID-19. OBJECTIVE: This study aimed to evaluate the relationship between COVID-19 and serum ferritin levels as the biochemical markers of SARS-CoV-2 infection in Sulaymaniyah, Iraq. METHOD: A biochemical test was performed at Baxshin Hospital in the period from February 2022 to April 2022. It was performed on a total of 85 patients (63.53% males and 36.47% females), ranging in age from 25 to 79 years old, with an average age of 48.4 years old. The patient's blood samples were taken to screen for ferritin levels. RESULT: The resulting outcome of this work is high serum ferritin levels for the majority of infected patients. Overall, there is a significant difference between male and female serum ferritin observed with a p-value < 0.05. The median interquartile range (IQR) of serum ferritin was 896 ng/mL for males, while it was only 611 ng/mL for females. The current study showed that age level has a great effect on elevated ferritin levels. It has been discovered that gender impacts increasing ferritin levels; 62% were found to be men and 38% were found to be women, with average ferritin levels of 1111 ng/mL and 712.8 ng/mL, respectively. CONCLUSION: SARS-CoV-2 infection causes significant laboratory abnormalities, including a high level of serum ferritin.

13.
Materials (Basel) ; 14(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34500952

ABSTRACT

In this research, a biopolymer-based electrolyte system involving methylcellulose (MC) as a host polymeric material and potassium iodide (KI) salt as the ionic source was prepared by solution cast technique. The electrolyte with the highest conductivity was used for device application of electrochemical double-layer capacitor (EDLC) with high specific capacitance. The electrical, structural, and electrochemical characteristics of the electrolyte systems were investigated using various techniques. According to electrochemical impedance spectroscopy (EIS), the bulk resistance (Rb) decreased from 3.3 × 105 to 8 × 102 Ω with the increase of salt concentration from 10 wt % to 40 wt % and the ionic conductivity was found to be 1.93 ×10-5 S/cm. The dielectric analysis further verified the conductivity trends. Low-frequency regions showed high dielectric constant, ε' and loss, ε″ values. The polymer-salt complexation between (MC) and (KI) was shown through a Fourier transformed infrared spectroscopy (FTIR) studies. The analysis of transference number measurement (TNM) supported ions were predominantly responsible for the transport process in the MC-KI electrolyte. The highest conducting sample was observed to be electrochemically constant as the potential was swept linearly up to 1.8 V using linear sweep voltammetry (LSV). The cyclic voltammetry (CV) profile reveals the absence of a redox peak, indicating the presence of a charge double-layer between the surface of activated carbon electrodes and electrolytes. The maximum specific capacitance, Cs value was obtained as 118.4 F/g at the sweep rate of 10 mV/s.

14.
Polymers (Basel) ; 13(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069445

ABSTRACT

In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet-visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc's method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.

15.
Polymers (Basel) ; 13(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33803001

ABSTRACT

The fabrication of energy storage EDLC in this work is achieved with the implementation of a conducting chitosan-methylcellulose-NH4NO3-glycerol polymer electrolyte system. The simple solution cast method has been used to prepare the electrolyte. The impedance of the samples was fitted with equivalent circuits to design the circuit diagram. The parameters associated with ion transport are well studied at various plasticizer concentrations. The FTIR investigation has been done on the films to detect the interaction that occurs among plasticizer and polymer electrolyte. To get more insights into ion transport parameters, the FTIR was deconvoluted. The transport properties achieved from both impedance and FTIR are discussed in detail. It was discovered that the transport parameter findings are in good agreement with both impedance and FTIR studies. A sample with high transport properties was characterized for ion dominancy and stability through the TNM and LSV investigations. The dominancy of ions in the electrolyte verified as the tion of the electrolyte is established to be 0.933 whereas it is potentially stable up to 1.87 V. The rechargeability of the EDLC is steady up to 500 cycles. The internal resistance, energy density, and power density of the EDLC at the 1st cycle are 53 ohms, 6.97 Wh/kg, and 1941 W/kg, respectively.

16.
Polymers (Basel) ; 13(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916979

ABSTRACT

In this work, a pair of biopolymer materials has been used to prepare high ion-conducting electrolytes for energy storage application (ESA). The chitosan:methylcellulose (CS:MC) blend was selected as a host for the ammonium thiocyanate NH4SCN dopant salt. Three different concentrations of glycerol was successfully incorporated as a plasticizer into the CS-MC-NH4SCN electrolyte system. The structural, electrical, and ion transport properties were investigated. The highest conductivity of 2.29 × 10-4 S cm-1 is recorded for the electrolyte incorporated 42 wt.% of plasticizer. The complexation and interaction of polymer electrolyte components are studied using the FTIR spectra. The deconvolution (DVN) of FTIR peaks as a sensitive method was used to calculate ion transport parameters. The percentage of free ions is found to influence the transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D). All electrolytes in this work obey the non-Debye behavior. The highest conductivity electrolyte exhibits the dominancy of ions, where the ionic transference number, tion value of (0.976) is near to infinity with a voltage of breakdown of 2.11 V. The fabricated electrochemical double-layer capacitor (EDLC) achieves the highest specific capacitance, Cs of 98.08 F/g at 10 mV/s by using the cyclic voltammetry (CV) technique.

17.
Materials (Basel) ; 14(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923484

ABSTRACT

This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10-3 S/cm. It is shown that the number density, mobility and diffusion coefficient of ions are enhanced by increasing the glycerol. A number of electric and electrochemical properties of the electrolyte-impedance, dielectric properties, transference numbers, potential window, energy density, specific capacitance (Cs) and power density-were determined. From the determined electric and electrochemical properties, it is shown that PVA: MC-NH4I proton conducting polymer electrolyte (PE) is adequate for utilization in energy storage device (ESD). The decrease of charge transfer resistance with increasing plasticizer was observed from Bode plot. The analysis of dielectric properties has indicated that the plasticizer is a novel approach to increase the number of charge carriers. The electron and ion transference numbers were found. From the linear sweep voltammetry (LSV) response, the breakdown voltage of the electrolyte is determined. From Galvanostatic charge-discharge (GCD) measurement, the calculated Cs values are found to drop with increasing the number of cycles. The increment of internal resistance is shown by equivalent series resistance (ESR) plot. The energy and power density were studied over 250 cycles that results to the value of 5.38-3.59 Wh/kg and 757.58-347.22 W/kg, respectively.

18.
Polymers (Basel) ; 13(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923856

ABSTRACT

The influence of dispersing Al-metal complex on the optical properties of PVA was investigated using UV-visible spectroscopy. Polymer composite films with various Al3+-complex amounts in the PVA matrix were arranged by solution casting technique by means of distilled water as a widespread solvent. The formation of Al3+-metal complex was verified through Ultraviolet-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR) examinations. The addition of Al-complex into the polymer matrix led to the recovery of the optical parameters such as dielectric constant (εr and εi) and refractive index (n). The variations of real and imaginary parts of complex dielectric constant as a function of photon wavelength were studied to calculate localized charge density values (N/m*), high-frequency dielectric constant, relaxation time, optical mobility, optical resistivity, and plasma angular frequency (ωp) of electrons. In proportion with Al3+-complex content, the N/m* values were amplified from 3.68 × 1055 kg-1 m-3 to 109 × 1055 kg-1 m-3. The study of optical parameters may find applications within optical instrument manufacturing. The optical band gap was determined from Tauc's equation, and the type of electronic transition was specified. A remarkable drop in the optical band gap was observed. The dispersion of static refractive index (no) of the prepared composites was analyzed using the theoretical Wemple-DiDomenico single oscillator model. The average oscillator energy (Eo) and oscillator dispersion energy (Ed) parameters were estimated.

19.
Membranes (Basel) ; 11(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33923927

ABSTRACT

Poly (vinyl alcohol) (PVA)-based solid polymer electrolytes doped with ammonium thiocyanate (NH4SCN) and glycerol were fabricated using a solution casting method. Lithium-based energy storage devices are not environmentally friendly materials, and they are toxic. Thus, proton-conducting materials were used in this work as they are harmless and are smaller than lithium. The interaction between PVA and the electrolyte elements was shown by FTIR analysis. The highest conductivity of 1.82 × 10-5 S cm-1 was obtained by the highest-conducting plasticized system (PSP_2) at room temperature. The mobility, diffusion coefficient, and number density of anions and cations were found to increase with increasing glycerol. FESEM was used to investigate the influence of glycerol on film morphology. TNM showed that the cations and anions were the main charge carriers. LSV showed that the electrochemical stability window of the PSP_2 system was 1.99 V. The PSP_2 system was applied in the preparation of an electrical double layer capacitor device. The shape of the cyclic voltammetry (CV) curve was nearly rectangular with no Faradaic peaks. From the galvanostatic charge-discharge analysis, the power density, energy density, and specific capacitance values were nearly constant beyond the first cycle at 318.73 W/Kg, 2.06 Wh/Kg, and 18.30 F g-1, respectively, for 450 cycles.

20.
Membranes (Basel) ; 10(11)2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33233480

ABSTRACT

In this study, biopolymer composite electrolytes based on chitosan:ammonium iodide:Zn(II)-complex plasticized with glycerol were successfully prepared using the solution casting technique. Various electrical and electrochemical parameters of the biopolymer composite electrolytes' films were evaluated prior to device application. The highest conducting plasticized membrane was found to have a conductivity of 1.17 × 10-4 S/cm. It is shown that the number density, mobility, and diffusion coefficient of cations and anions fractions are increased with the glycerol amount. Field emission scanning electron microscope and Fourier transform infrared spectroscopy techniques are used to study the morphology and structure of the films. The non-Debye type of relaxation process was confirmed from the peak appearance of the dielectric relaxation study. The obtained transference number of ions (cations and anions) and electrons for the highest conducting sample were identified to be 0.98 and 0.02, respectively. Linear sweep voltammetry shows that the electrochemical stability of the highest conducting plasticized system is 1.37 V. The cyclic voltammetry response displayed no redox reaction peaks over its entire potential range. It was discovered that the addition of Zn(II)-complex and glycerol plasticizer improved the electric double-layer capacitor device performances. Numerous crucial parameters of the electric double-layer capacitor device were obtained from the charge-discharge profile. The prepared electric double-layer capacitor device showed that the initial values of specific capacitance, equivalence series resistance, energy density, and power density are 36 F/g, 177 Ω, 4.1 Wh/kg, and 480 W/kg, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...