Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 35: 77-85, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27235791

ABSTRACT

Liver fibrosis is the progressive accumulation of connective tissue ultimately resulting in loss of organ function. Currently, no effective antifibrotics are available due to a lack of reliable human models. Here we investigated the fibrotic process in human precision-cut liver slices (PCLS) and studied the efficacy of multiple putative antifibrotic compounds. Our results demonstrated that human PCLS remained viable for 48h and the early onset of fibrosis was observed during culture, as demonstrated by an increased gene expression of Heat Shock Protein 47 (HSP47) and Pro-Collagen 1A1 (PCOL1A1) as well as increased collagen 1 protein levels. SB203580, a specific inhibitor of p38 mitogen-activated protein kinase (MAPK) showed a marked decrease in HSP47 and PCOL1A1 gene expression, whereas specific inhibitors of Smad 3 and Rac-1 showed no or only minor effects. Regarding the studied antifibrotics, gene levels of HSP47 and PCOL1A1 could be down-regulated with sunitinib and valproic acid, while PCOL1A1 expression was reduced following treatment with rosmarinic acid, tetrandrine and pirfenidone. These results are in contrast with prior data obtained in rat PCLS, indicating that antifibrotic drug efficacy is clearly species-specific. Thus, human PCLS is a promising model for liver fibrosis. Moreover, MAPK signaling plays an important role in the onset of fibrosis in this model and transforming growth factor beta pathway inhibitors appear to be more effective than platelet-derived growth factor pathway inhibitors in halting fibrogenesis in PCLS.


Subject(s)
Liver Cirrhosis/drug therapy , Liver/drug effects , Adolescent , Adult , Aged , Aged, 80 and over , Child , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Female , Gene Expression , HSP47 Heat-Shock Proteins/genetics , Humans , Imidazoles/pharmacology , In Vitro Techniques , Liver/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Male , Middle Aged , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Young Adult , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
2.
Regul Toxicol Pharmacol ; 71(2 Suppl): S1-27, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25818068

ABSTRACT

The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources.


Subject(s)
Ecotoxicology/standards , Nanostructures/toxicity , Animals , Ecotoxicology/legislation & jurisprudence , Environmental Monitoring , Environmental Pollutants/toxicity , Europe , Humans , Nanostructures/classification , Particle Size , Toxicity Tests
3.
Regul Toxicol Pharmacol ; 70(2): 492-506, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25108058

ABSTRACT

The grouping of substances serves to streamline testing for regulatory purposes. General grouping approaches for chemicals have been implemented in, e.g., the EU chemicals regulation. While specific regulatory frameworks for the grouping of nanomaterials are unavailable, this topic is addressed in different publications, and preliminary guidance is provided in the context of substance-related legislation or the occupational setting. The European Centre for Ecotoxicology and Toxicology of Chemicals Task Force on the Grouping of Nanomaterials reviewed available concepts for the grouping of nanomaterials for human health risk assessment. In their broad conceptual design, the evaluated approaches are consistent or complement each other. All go beyond the determination of mere structure-activity relationships and are founded on different aspects of the nanomaterial life cycle. These include the NM's material properties and biophysical interactions, specific types of use and exposure, uptake and kinetics, and possible early and apical biological effects. None of the evaluated grouping concepts fully take into account all of these aspects. Subsequent work of the Task Force will aim at combining the available concepts into a comprehensive 'multiple perspective' framework for the grouping of nanomaterials that will address all of the mentioned aspects of their life cycles.


Subject(s)
Nanostructures/adverse effects , Risk Assessment/legislation & jurisprudence , Animals , Ecotoxicology/legislation & jurisprudence , Government Regulation , Humans , Kinetics , Structure-Activity Relationship
4.
Toxicol Sci ; 140(1): 144-59, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752500

ABSTRACT

Drug-induced liver injury (DILI) is an important clinical problem. Here, we used a genomics approach to in detail investigate the hypothesis that critical drug-induced toxicity pathways act in synergy with the pro-inflammatory cytokine tumor necrosis factor α (TNFα) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ∼80 DILI compounds in primary human hepatocytes. Compounds displaying weak or no TNFα synergism, namely ketoconazole, nefazodone, and methotrexate, failed to synchronously induce both pathways. The ER stress induced was primarily related to protein kinase R-like ER kinase (PERK) and activating transcription factor 4 (ATF4) activation and subsequent expression of C/EBP homologous protein (CHOP), which was all independent of TNFα signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision-cut human liver slices. Targeted RNA interference studies revealed that whereas ER stress signaling through inositol-requiring enzyme 1α (IRE1α) and activating transcription factor 6 (ATF6) acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNFα-induced apoptosis. Whereas inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNFα cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNFα-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing toward caspase-8-dependent TNFα-induced apoptosis.


Subject(s)
Carbamazepine/toxicity , Chemical and Drug Induced Liver Injury/etiology , Diclofenac/toxicity , Oxidative Stress/drug effects , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Gene Expression Profiling , Genome-Wide Association Study , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress/immunology , Transcriptome/drug effects , Tumor Necrosis Factor-alpha/toxicity
5.
J Appl Toxicol ; 34(9): 993-1001, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24038040

ABSTRACT

Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker identification, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PCLS were incubated with acetaminophen (APAP), 3-acetamidophenol, diclofenac and lipopolysaccharide for 24-48 h. PCLS medium from all species treated with APAP demonstrated similar changes in protein profiles, as previously found in mouse urine after APAP-induced liver injury, including the same key proteins: superoxide dismutase 1, carbonic anhydrase 3 and calmodulin. Further analysis showed that the concentration of hepcidin, a hepatic iron-regulating hormone peptide, was reduced in PCLS medium after APAP treatment, resembling the decreased mouse plasma concentrations of hepcidin observed after APAP treatment. Interestingly, comparable results were obtained after 3-acetamidophenol incubation in rat and human, but not mouse PCLS. Incubation with diclofenac, but not with lipopolysaccharide, resulted in the same toxicity parameters as observed for APAP, albeit to a lesser extent. In conclusion, proteomics can be applied to identify potential translational biomarkers using the PCLS system.


Subject(s)
Biomarkers/urine , Chemical and Drug Induced Liver Injury/diagnosis , Gene Expression Profiling , Liver/drug effects , Proteomics , Acetaminophen/administration & dosage , Acetaminophen/toxicity , Animals , Calmodulin/metabolism , Carbonic Anhydrase III/metabolism , Diclofenac/administration & dosage , Diclofenac/toxicity , Hepcidins/metabolism , Humans , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Liver/metabolism , Mice , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Toxicity Tests
6.
Chem Res Toxicol ; 26(5): 710-20, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23565644

ABSTRACT

Idiosyncratic drug-induced liver injury (IDILI) is a major problem during drug development and has caused drug withdrawal and black-box warnings. Because of the low concordance of the hepatotoxicity of drugs in animals and humans, robust screening methods using human tissue are needed to predict IDILI in humans. According to the inflammatory stress hypothesis, the effects of inflammation interact with the effects of a drug or its reactive metabolite, precipitating toxic reactions in the liver. As a follow-up to our recently published mouse precision-cut liver slices model, an ex vivo model involving human precision-cut liver slices (hPCLS), co-incubated for 24 h with IDILI-related drugs and lipopolysaccharide (LPS), was developed to study IDILI mechanisms related to inflammatory stress in humans and to detect potential biomarkers. LPS exacerbated the effects of ketoconazole and clozapine toxicity but not those of their non-IDILI-related comparators, voriconazole and olanzapine. However, the IDILI-related drugs diclofenac, carbamazepine, and troglitazone did not show synergistic toxicity with LPS after incubation for 24 h. Co-incubation of ketoconazole and clozapine with LPS decreased the levels of glutathione in hPCLS, but this was not seen for the other drugs. All drugs affected LPS-induced cytokine release, but interestingly, only ketoconazole and clozapine increased the level of LPS-induced TNF release. Decreased levels of glutathione and cysteine conjugates of clozapine were detected in IDILI-responding livers following cotreatment with LPS. In conclusion, we identified ketoconazole and clozapine as drugs that exhibited synergistic toxicity with LPS, while glutathione and TNF were found to be potential biomarkers for IDILI-inducing drugs mediated by inflammatory stress. hPCLS appear to be suitable for further unraveling the mechanisms of inflammatory stress-associated IDILI.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Clozapine/toxicity , Ketoconazole/toxicity , Adolescent , Adult , Aged , Female , Humans , In Vitro Techniques , Lipopolysaccharides/toxicity , Male , Middle Aged , Young Adult
7.
Arch Toxicol ; 87(1): 155-65, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22914986

ABSTRACT

N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat and human, the toxicity of APAP and AMAP was tested ex vivo in precision-cut liver slices (PCLS) of mouse, rat and human. Based on ATP content and histomorphology, APAP was more toxic in mouse than in rat and human PCLS. Surprisingly, although AMAP showed a much lower toxicity than APAP in mouse PCLS, AMAP was equally toxic as or even more toxic than APAP at all concentrations tested in both rat and human PCLS. The profile of proteins released into the medium of AMAP-treated rat PCLS was similar to that of APAP, whereas in the medium of mouse PCLS, it was similar to the control. Metabolite profiling indicated that mouse PCLS produced the highest amount of glutathione conjugate of APAP, while no glutathione conjugate of AMAP was detected in all three species. Mouse also produced ten times more hydroquinone metabolites of AMAP, the assumed proximate reactive metabolites, than rat or human. In conclusion, AMAP is toxic in rat and human liver and cannot be used as non-toxic isomer of APAP. The marked species differences in APAP and AMAP toxicity and metabolism underline the importance of using human tissues for better prediction of toxicity in man.


Subject(s)
Acetaminophen/toxicity , Liver/drug effects , Toxicity Tests/methods , Acetaminophen/metabolism , Acetaminophen/pharmacokinetics , Adenosine Triphosphate/metabolism , Adult , Aged , Aged, 80 and over , Animals , Child , Female , Humans , Hydroquinones/metabolism , In Vitro Techniques , Isomerism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Proteins/metabolism , Rats , Rats, Wistar , Species Specificity
8.
Chem Res Toxicol ; 25(9): 1938-47, 2012 Sep 17.
Article in English | MEDLINE | ID: mdl-22870868

ABSTRACT

Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in increased toxicity (inflammatory stress hypothesis). Aiming to develop a robust ex vivo screening method to study inflammatory stress-related IDILI mechanisms and to find biomarkers that can detect or predict IDILI, mouse precision-cut liver slices (mPCLS) were coincubated for 24 h with IDILI-related drugs and lipopolysaccharide. Lipopolysaccharide exacerbated ketoconazole (15 µM) and clozapine (45 µM) toxicity but not their non-IDILI-related comparators, voriconazole (1500 µM) and olanzapine (45 µM). However, the other IDILI-related drugs tested [diclofenac (200 µM), carbamazepine (400 µM), and troglitazone (30 µM)] did not cause synergistic toxicity with lipopolysaccharide after 24 h of incubation. Lipopolysaccharide further decreased the reduced glutathione levels caused by ketoconazole or clozapine in mPCLS after 24 h of incubation, which was not the case for the other drugs. Lipopolysaccharide significantly increased nitric oxide (NO), cytokine, and chemokine release into the mPCLS media, while the treatment with the drugs alone did not cause any substantial change. All seven drugs drastically reduced lipopolysaccharide-induced NO production. Interestingly, only ketoconazole and clozapine increased the lipopolysaccharide-induced granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) release. Pilot experiments showed that diclofenac and troglitazone, but not carbamazepine, demonstrated synergistic toxicity with lipopolysaccharide after a longer incubation of 48 h in mPCLS. In conclusion, we have developed an ex vivo model to detect inflammatory stress-related liver toxicity and identified ketoconazole, clozapine, troglitazone, and diclofenac as drugs that showed synergistic toxicity with lipopolysaccharide. Reduced glutathione, G-CSF, and GM-CSF were identified to be potential biomarkers for IDILI-inducing drugs mediated by inflammatory stress, and mPCLS appear to be a promising screening tool to further unravel the mechanism of IDILI.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Animals , Benzodiazepines/chemistry , Benzodiazepines/toxicity , Biomarkers/metabolism , Carbamazepine/chemistry , Carbamazepine/toxicity , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemokines/metabolism , Chromans/chemistry , Chromans/toxicity , Clozapine/chemistry , Clozapine/toxicity , Cytokines/metabolism , Diclofenac/chemistry , Diclofenac/toxicity , Drug Synergism , Female , Glutathione/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , In Vitro Techniques , Ketoconazole/chemistry , Ketoconazole/toxicity , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Nitrogen Oxides/metabolism , Olanzapine , Pyrimidines/chemistry , Pyrimidines/toxicity , Thiazolidinediones/chemistry , Thiazolidinediones/toxicity , Triazoles/chemistry , Triazoles/toxicity , Troglitazone , Voriconazole
SELECTION OF CITATIONS
SEARCH DETAIL
...