Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Signal Process Control ; 68: 102669, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33995561

ABSTRACT

COVID-19 is still the main worldwide issue since the outbreak. Many strategies were implemented such as suppression, mitigation, and mathematical-engineering strategies, to control this pandemic. In this work, a lead/lag compensator is proposed to control an unstable Covid-19 nonlinear system after using some required assumptions. The control theory is involved with the unstable pandemic and other existing strategies until the invention of the vaccine is approved. In addition, the Most Valuable Player Algorithm (MVPA) is used to optimize the parameters of the proposed controller and to determine whether it is a lead or lag compensator. Finally, the simulation results are based on the daily reports of two pandemic cities: Hubei (China), and Lazio (Italy) since the outbreak began. It can be concluded that the lead/lag compensator can effectively control the COVID-19 system.

2.
Biomed Signal Process Control ; 64: 102317, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33173541

ABSTRACT

COVID-19 has been a worldwide concern since the outbreak. Many strategies have been involved such as suppression and mitigation strategies to deal with this epidemic. In this paper, a new mathematical-engineering strategy is introduced in order to control the COVID-19 epidemic. Thereby, control theory is involved in controlling the unstable epidemic alongside with the other suggested strategies until the vaccine will hopefully be invented as soon as possible. A new robust control algorithm is introduced to compensate the COVID-19 nonlinear system by propose a proper controller after using necessary assumptions and analysis are made. In addition, the Variable Transformation Technique (VTT) is used to simplify the COVID-19 system. Furthermore, the Most Valuable Player Algorithm (MVPA) is applied in order to optimize the parameters of the proposed controller. The simulation results are based on the daily reports of two cities Hubei (China) and Lazio (Italy) since the outbreak. It can be concluded that the proposed control algorithm can effectively compensate the COVID-19 system. In addition, it can be considered as an effective mathematical-engineering strategy to control this epidemic alongside with the other strategies.

SELECTION OF CITATIONS
SEARCH DETAIL