Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Vet World ; 17(2): 337-343, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595655

ABSTRACT

Background and Aim: Asian macaques are natural hosts of several Plasmodium species. Some monkey malaria parasites may infect humans and cause zoonotic infections. This study was conducted to estimate the prevalence of monkey malaria parasites in Bogor, Indonesia, based on molecular detection and identification, particularly in cynomolgus monkeys, which have a wide geographic distribution and share extensive habitats with humans. These data are needed to evaluate the status of simian malaria among macaques in Bogor and to study the potential risks to human health. These updated data will provide sufficient information for implementing malaria control strategies in the future and for developing a potential malaria vaccine using monkeys as an animal model. Materials and Methods: Blood samples of 274 cynomolgus monkeys (Macaca fascicularis) were collected and identified using microscopy. DNA was extracted from positive blood samples and analyzed using polymerase chain reaction (PCR) to amplify the small subunit ribosomal RNA (SSU rRNA) target gene using consensus primers for Plasmodium species. The PCR-positive samples were then nucleotide-sequenced using commercial sequencing services, analyzed using the BioEdit program, and aligned using Basic Local Alignment Search Tool from the National Center for Biotechnology Information. Phylogenetic trees were constructed using MEGA 11.0 and the neighbor-joining (NJ) method to determine the kinship of Plasmodium. Bootstrapping was performed using 500 replicates to assess the robustness of tree topologies. Results: Thirty-eight of the 274 microscopically positive samples for Plasmodium spp. were also positive using PCR, resulting in a 1640 bp amplicon. Further, analysis using nucleotide sequencing confirmed that these positive samples were Plasmodium inui with more than 99% nucleotide identity compared to GenBank sequences. Phylogenetic tree analysis of the SSU rRNA partial gene showed that all our isolates clustered and were closely related to a P. inui strain isolated from cynomolgus macaques in South China in 2011. Conclusion: P. inui is the predominant malaria parasite in cynomolgus monkeys from Bogor.

2.
Acta Trop ; 250: 107097, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097150

ABSTRACT

Mitochondrial cytochrome c oxidase subunit I (COI) sequences were utilized to infer the population genetic structure of Simulium (Gomphostilbia) atratum De Meijere, an endemic simulid species to Indonesia. Both median-joining haplotype network and maximum-likelihood tree revealed two genetic lineages (A and B) within the species, with an overlap distribution in Lombok, which is situated along Wallace's line. Genetic differentiation and gene flow with varying frequencies (FST = 0.02-0.967; Nm = 0.01-10.58) were observed between populations of S. (G.) atratum, of which population pairs of different lineages showed high genetic differentiation. Notably, the high genetic distance of up to 5.92 % observed within S. (G.) atratum in Lombok was attributed to the existence of two genetically distinct lineages. The co-occurrence of distinct lineages in Lombok indicated that Wallace's line did not act as faunistic border for S. (G.) atratum in the present study. Moreover, both lineages also exhibited unimodal distributions and negative values of neutrality tests, suggesting a pattern of population expansion. The expansion and divergence time estimation suggested that the two lineages of S. (G.) atratum diverged and expanded during the Pleistocene era in Indonesia.


Subject(s)
Simuliidae , Animals , Indonesia , Simuliidae/genetics , Mitochondria , Phylogeny , Genetic Variation
3.
Parasit Vectors ; 16(1): 248, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480109

ABSTRACT

BACKGROUND: DNA barcoding is a valuable taxonomic tool for rapid and accurate species identification and cryptic species discovery in black flies. Indonesia has 143 nominal species of black flies, but information on their biological aspects, including vectorial capacity and biting habits, remains underreported, in part because of identification problems. The current study represents the first comprehensive DNA barcoding of Indonesian black flies using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. METHODS: Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP, GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be delineated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species identification was tested. RESULTS: The DNA barcodes successfully distinguished most morphologically distinct species (> 80% of sampled taxa). Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably, populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feuerborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted to clarify the taxonomic status of these more complex taxa. CONCLUSIONS: The findings showed that COI barcoding is a promising taxonomic tool for Indonesian black flies. The DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful in the control and management of potential vector species.


Subject(s)
DNA Barcoding, Taxonomic , Simuliidae , Animals , Indonesia , Simuliidae/genetics
4.
Acta Trop ; 241: 106771, 2023 May.
Article in English | MEDLINE | ID: mdl-36414048

ABSTRACT

The Asian tiger mosquito, Aedes albopictus has well-adaptive behavior to environmental changes, including human urbanization, and has an essential role as the main vector of important pathogenic arboviruses. This study aims to analyze the biology and life table of the Ae. albopictus populations collected from urban and peri-urban areas of Bogor, West Java, Indonesia under laboratory conditions. Mosquito eggs collection was carried out in urban and peri-urban areas using ovitraps. The observation of the life table experiment that followed the development of Ae. albopictus started from the emergence of the first individual to the last surviving individual. Several biological parameters comparing Ae. albopictus from two collection sites based on life table analysis were shown to be significantly different. Biting activity of all mosquitoes from urban and peri-urban areas showed a clear bimodal activity with morning peak at 09:00-10.00 and evening peak at 16:00-17:00. Ae. albopictus from the urban area have higher fecundity, considerably longer lifespan, more gonotrophic cycles, and a higher net reproduction rate (R0) than Ae. albopictus from the peri-urban area. These findings will provide valuable information about the well-adapted Ae. albopictus in urban areas and assist in providing basic reproductive data to improve vector control and current surveillance strategies especially in the study area.


Subject(s)
Aedes , Animals , Humans , Indonesia , Life Tables , Mosquito Vectors , Urbanization
5.
Vet World ; 15(8): 1961-1968, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36313848

ABSTRACT

Background and Aim: Mosquito-borne viral infections are diseases that reduce human and animal health levels. Their transmission involves wildlife animals as reservoirs and amplifying hosts, including long-tailed macaques (Macaca fascicularis), and potentially transmits to humans and vice versa. This study aimed to determine the species diversity, richness, and biting activity of mosquitoes in a long-tailed macaque breeding area facility and discover the presence of Flavivirus and Alphavirus as the two main arboviruses reported to infect macaques. Materials and Methods: Human landing catch, light trap, and sweep net methods were used for mosquito collection around long-tailed macaques cages at parallel times for 12 h (18:00-06:00) for 12 nights. Mosquito species were identified to the species level based on the morphological identification key for Indonesian mosquitoes. Mosquito diversity was analyzed by several diversity indices. Mosquitoes caught using the human landing catch method were pooled based on mosquito species for viral ribonucleic acid extraction. Reverse transcription-polymerase chain reaction (RT-PCR) detected the non-structural protein 5 of the Flavivirus region and the non-structural protein 4 of the Alphavirus region. This study used the man-hour density and man-biting rate formulas for mosquito density. Results: Ten mosquito species were collected, namely, Aedes albopictus, Anopheles aconitus, Anopheles minimus, Anopheles vagus, Armigeres foliatus, Armigeres subalbatus, Culex gelidus, Culex hutchinsoni, Culex tritaeniorhynchus, and Culex quinquefasciatus. The number of mosquitoes caught using the light trap method had the highest abundance. In contrast, the number of mosquito species caught using the sweep net method had lower diversity than the other two methods. Seven mosquito species were obtained using the human landing catch method. The mosquito species with the highest density was Cx. quinquefasciatus within the observed densest period from 20:00 to 21:00. Negative results were obtained from RT-PCR testing on five species detected using universal Flavivirus and Alphavirus primers. Conclusion: The occurrence of mosquitoes in long-tailed macaque breeding facilities can be a source of transmission of zoonotic vector-borne diseases between animals and humans and vice versa.

6.
Insects ; 13(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36292872

ABSTRACT

Wolbachia-infected Aedes aegypti is the latest technology that was developed to eliminate dengue fever. The Ministry of Research and Technology of the Republic of Indonesia (Kemenristekdikti) established an expert group to identify future potential risks that may occur over a period of 30 years associated with the release of Wolbachia-infected Ae. aegypti. The risk assessment consisted of identifying different hazards that may have impacts on humans and the environment. From the consensus among the experts, there were 56 hazards identified and categorized into 4 components, namely, ecological matters, efficacy in mosquito management, economic and sociocultural issues, and public health standards. There were 19 hazards in the ecological group. The overall likelihood in the ecology of the mosquito is very low (0.05), with moderate consequence (0.74), which resulted in negligible risk. For the efficacy in mosquito management group, there were 12 hazards that resulted in very low likelihood (0.11) with high consequence (0.85). The overall risk for mosquito management efficacy was very low (0.09). There were 14 hazards identified in the public health standard with very low likelihood (0.07), moderate consequence (0.50) and negligible risk (0.04). Lastly, 13 hazards were identified in the economic and sociocultural group with low likelihood (0.01) but of moderate consequence (0.5), which resulted in a very low risk (0.09). The risk severity level of the four components leading to the endpoint risk of "cause more harm" due to releasing Wolbachia-infected Ae. aegypti is negligible (0.01).

7.
J Med Entomol ; 59(2): 710-718, 2022 03 16.
Article in English | MEDLINE | ID: mdl-34893858

ABSTRACT

Indonesia has rich Anopheline (Diptera: Culicidae) mosquito species living in various types of ecosystems. The study was conducted to profile and compare Anopheles diversity, equitability, and dominance in various ecosystems using different animal-based sampling techniques. The present study analyzed a subset of data collected from a nation-wide vector and animal reservoirs survey in 2016. Analyses were restricted to three ecosystem types (forest, nonforest, and coastal areas) in Java and Sumatera Islands. A total of 5,477 Anopheles were collected by using animal-baited (n = 1,909) and animal-baited trap nets (n = 1,978), consisting of 23 Anopheline species. Overall, Anopheles vagus was the most abundant species, followed by An. subpictus and An. barbirostris. Among the three ecosystems, the forest had a higher diversity index (H' = 1.98), but each ecosystem has its specific predominant species. Compared with the animal-baited method, the Anopheles abundance collected by animal-baited trap nets was two-fold higher. Ecosystem, elevation, and sampling methods were associated with the abundance of female Anopheles (P-value < 0.001). Our findings revealed that Anopheles were found in a different ecosystem, indicating the potential of malaria transmission. This suggests that improved malaria vector surveillance is essential in all types of ecosystem. Furthermore, the study suggested that animal-baited trap nets could be used as the standard method of outdoor resting sampling in Indonesia in addition to the traditional human landing collection approach.


Subject(s)
Anopheles , Malaria , Animals , Ecosystem , Female , Indonesia , Mosquito Vectors
8.
Parasit Vectors ; 13(1): 420, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32799914

ABSTRACT

BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia. METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp. RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)). CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.


Subject(s)
Bacteria , Eucoccidiida , Pets , Siphonaptera , Ticks , Anaplasma/classification , Anaplasma/genetics , Anaplasma/isolation & purification , Animals , Arachnid Vectors/microbiology , Arachnid Vectors/parasitology , Arthropod Vectors/microbiology , Arthropod Vectors/parasitology , Asia, Southeastern/epidemiology , Babesia/classification , Babesia/genetics , Babesia/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Zoonoses , Bartonella/classification , Bartonella/genetics , Bartonella/isolation & purification , Cat Diseases , Cats/microbiology , Cats/parasitology , Dog Diseases , Dogs/microbiology , Dogs/parasitology , Ehrlichia/classification , Ehrlichia/genetics , Ehrlichia/isolation & purification , Eucoccidiida/classification , Eucoccidiida/genetics , Eucoccidiida/isolation & purification , Asia, Eastern/epidemiology , Genes, Bacterial , Genes, Protozoan , Insect Vectors/microbiology , Insect Vectors/parasitology , Pathology, Molecular , Pets/microbiology , Pets/parasitology , Phylogeny , Prevalence , Rickettsia/classification , Rickettsia/genetics , Rickettsia/isolation & purification , Siphonaptera/microbiology , Siphonaptera/parasitology , Ticks/microbiology , Ticks/parasitology , Zoonoses
9.
J Vet Med Sci ; 82(7): 1030-1041, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32448813

ABSTRACT

Mosquitoes transmit many kinds of arboviruses (arthropod-borne viruses), and numerous arboviral diseases have become serious problems in Indonesia. In this study, we conducted surveillance of mosquito-borne viruses at several sites in Indonesia during 2016-2018 for risk assessment of arbovirus infection and analysis of virus biodiversity in mosquito populations. We collected 10,015 mosquitoes comprising at least 11 species from 4 genera. Major collected mosquito species were Culex quinquefasciatus, Aedes albopictus, Culex tritaeniorhynchus, Aedes aegypti, and Armigeres subalbatus. The collected mosquitoes were divided into 285 pools and used for virus isolation using two mammalian cell lines, Vero and BHK-21, and one mosquito cell line, C6/36. Seventy-two pools showed clear cytopathic effects only in C6/36 cells. Using RT-PCR and next-generation sequencing approaches, these isolates were identified as insect flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), new permutotetravirus (designed as Bogor virus) (family Permutotetraviridae, genus Alphapermutotetravirus), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus). We believed that this large surveillance of mosquitoes and mosquito-borne viruses provides basic information for the prevention and control of emerging and re-emerging arboviral diseases.


Subject(s)
Culicidae/virology , RNA Viruses/isolation & purification , Aedes , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , High-Throughput Nucleotide Sequencing , Indonesia/epidemiology , Mosquito Vectors/virology , RNA Virus Infections/epidemiology , RNA Viruses/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vero Cells
11.
Acta Trop ; 199: 104986, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30981645

ABSTRACT

Black flies fauna in Indonesia has been studied extensively, however their ecology is still remaining unexplored. The study was carried out by collecting the larvae and pupae black flies in tea plantation area, Puncak Bogor. The collection sites were the streams located in 3 differents type of altitude, i.e. (1) the natural forest area (1200 m above the sea level) (P1); (2) the tea plantation area (900-1200 m asl) (P2); and (3) the housing area of the official tea plantation (900 m asl) (P3). The collection of black flies were done beweekly from July 2012 to April 2013. The result showed that 12 species of black flies were recorded which belong to one genus, Simulium s.l. and three subgenera (Nevermannia, Gomphostilbia and Simulium s.str). In P1, the area with high elevation (natural forest), it was found the most number of black flies species (11 species). In the streams around and in the tea plantation area (P2), it was found 7 species, and in P3, the official housing area, it was recorded 8 species. The analysis satistically showed that P1 was dominated by larvae and pupae of S. (S.) argyrocinctum, P2 by larvae and pupae of S. (N.) feuerborni, and P3 by S. (S.) argyrocinctum and S. (N.) feuerborni. The distribution of these species was different according to the elevation of the areas.


Subject(s)
Simuliidae/classification , Animals , Camellia sinensis , Ecology , Female , Forests , Indonesia , Larva/classification , Pupa/classification
12.
Acta Trop ; 185: 133-137, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29452114

ABSTRACT

Indonesia is one of the megadiversity country in the world endowed with rich and unique biodiversity insects such as blackflies species (Diptera: Simuliidae). Blackflies are found almost anywhere with running water suitable as habitat for the immature stages. This family is one of the most important groups of blood-sucking insects. This study collates the records of Simulium (Diptera: Simuliidae) in previous publications related fauna of Indonesia. Based on the results of this study, there were 124 species of blackflies in Indonesian Archipelago. All species are assigned to the genus Simulium Latreille s.l., and are placed into five subgenera, i.e. Gomphostilbia Enderlein, Morops Enderlein, Nevermannia Enderlein, Simulium Latreille s.str. and Wallacellum Takaoka. Further classification into 27 species groups within the subgenera were also made. Checklists of Indonesian Simuliidae are provided including data on the distribution of each species.


Subject(s)
Biodiversity , Simuliidae/classification , Animals , Checklist , Ecosystem , Female , Indonesia , Male
13.
Sci Rep ; 7(1): 5871, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724923

ABSTRACT

Uncovering the hidden diversity and evolutionary history of arthropods of medico-veterinary importance could have significant implications for vector-borne disease control and epidemiological intervention. The buffalo fly Haematobia exigua is an obligate bloodsucking ectoparasite of livestock. As an initial step towards understanding its population structures and biogeographic patterns, we characterized partial cytochrome c oxidase subunit I (COI) and cytochrome b (Cytb) sequences of H. exigua from three distinct geographic regions in Southeast Asia. We detected two distinct mitochondrial haplogroups of H. exigua in our surveyed geographic regions. Haplogroup I is widespread in the Southeast Asian mainland whereas haplogroup II is generally restricted to the type population Java Island. Both haplogroups were detected co-occurring on Borneo Island. Additionally, both haplogroups have undergone contrasting evolutionary histories, with haplogroup I exhibited a high level of mitochondrial diversity indicating a population expansion during the Pleistocene era dating back to 98,000 years ago. However, haplogroup II presented a low level of mitochondrial diversity which argues against the hypothesis of recent demographic expansion.


Subject(s)
Biological Evolution , Haplotypes/genetics , Islands , Muscidae/genetics , Animals , Asia, Southeastern , Base Sequence , Gene Flow , Genetic Markers , Genetic Variation , Geography , Phylogeny , Species Specificity
14.
Acta Trop ; 171: 30-36, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28315305

ABSTRACT

The bionomics of Anopheles was investigated in coastal Sungai Nyamuk Village, Nunukan District, North Kalimantan Province from August 2010 to January 2012. Mosquitoes were captured using human landing collections. A total of 5103 Anopheles mosquitoes comprising 11 species were caught and 2259 adult parous females were tested by ELISA for Plasmodium antigen. Anopheles vagus, An. sundaicus and An. subpictus were the most abundant species caught. Overall, Anopheles vagus were zoophilic and exophagic, but there was variation between species. Anopheles sundaicus and An. subpictus were anthropophilic and endophagic. Anopheles peditaeniatus and An. sundaicus collected biting humans outdoors were positive for P. falciparum protein and were incriminated as the likely vectors of malaria in Sungai Nyamuk Village. This research also showed that malaria transmission in Sungai Nyamuk Village occurred outdoors. Residual house spraying therefore would not protect the human population from vector contact, so that combination use of long lasting nets and personel protection is needed.


Subject(s)
Anopheles , Insect Vectors/parasitology , Malaria, Falciparum/epidemiology , Animals , Female , Humans , Indonesia/epidemiology , Malaria, Falciparum/transmission , Seasons
15.
J Med Entomol ; 53(4): 972-976, 2016 07.
Article in English | MEDLINE | ID: mdl-27208009

ABSTRACT

We access the molecular diversity of the black fly Simulium nobile De Mejiere, using the universal cytochrome c oxidase subunit I (COI) barcoding gene, across its distributional range in Southeast Asia. Our phylogenetic analyses recovered three well-supported mitochondrial lineages of S. nobile, suggesting the presence of cryptic species. Lineage A is composed of a population from Sabah, East Malaysia (Borneo); lineage B represents the type population from Java, Indonesia; and lineage C includes populations from the mainland of Southeast Asia (Peninsular Malaysia and Thailand). The genetic variation of lineage C on the mainland is greater than that of lineages A and B on the islands of Borneo and Java. Our study highlights the value of a molecular approach in assessing species status of simuliids in geographically distinct regions.


Subject(s)
Genetic Variation , Simuliidae/genetics , Animals , Electron Transport Complex IV/genetics , Female , Genetic Speciation , Indonesia , Insect Proteins/genetics , Larva/classification , Larva/growth & development , Malaysia , Male , Phylogeny , Pupa/classification , Pupa/genetics , Pupa/growth & development , Sequence Analysis, DNA , Simuliidae/classification , Simuliidae/growth & development , Sympatry , Thailand
16.
J Med Entomol ; 52(5): 829-36, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336220

ABSTRACT

Simulium feuerborni Edwards is geographically widespread in Southeast Asia. Previous cytogenetic study in Thailand revealed that this species is a species complex composed of two cytoforms (A and B). In this study, we cytologically examined specimens obtained from the Cameron Highlands, Malaysia, and Puncak, Java, Indonesia. The results revealed two additional cytoforms (C and D) of S. feuerborni. Specimens from Malaysia represent cytoform C, differentiated from other cytoforms by a fixed chromosome inversion on the long arm of chromosome III (IIIL-5). High frequencies of the B chromosome (33-83%) were also observed in this cytoform. Specimens from Indonesia represent the cytoform D. This cytoform is differentiated from others by a fixed chromosome inversion difference on the long arm of chromosome II (IIL-4). Mitochondrial DNA sequences support genetic differentiation among cytoforms A, B, and C. The pairwise F(ST) values among these cytoforms were highly significantly consistent with the divergent lineages of the cytoforms in a median-joining haplotype network. However, a lack of the sympatric populations prevented us from testing the species status of the cytoforms.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Insect Proteins/genetics , Simuliidae/genetics , Animals , Base Sequence , Chromosome Inversion , DNA, Mitochondrial/metabolism , Female , Indonesia , Insect Proteins/metabolism , Malaysia , Male , Molecular Sequence Data , Simuliidae/classification , Simuliidae/metabolism , Thailand
17.
Parasit Vectors ; 8: 297, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26022092

ABSTRACT

BACKGROUND: Allopatric populations present challenges for biologists working with vectors. We suggest that conspecificity can be concluded in these cases when data from four character sets-chromosomal, ecological, molecular, and morphological-express variation no greater between the allopatric populations than between corresponding sympatric populations. We use this approach to test the conspecificity of Simulium nodosum Puri on the mainland of Southeast Asia and Simulium shirakii Kono & Takahasi in Taiwan. The validity of these two putative species has long been disputed given that they are morphologically indistinguishable. FINDINGS: The mitochondria-encoded cytochrome c oxidase subunit I (COI), 12S rRNA, and 16S rRNA genes and the nuclear-encoded 28S rRNA gene support the conspecific status of S. nodosum from Myanmar, Thailand, and Vietnam and S. shirakii from Taiwan; 0 to 0.19 % genetic differences between the two taxa suggest intraspecific polymorphism. The banding patterns of the polytene chromosomes of the insular Taiwanese population of S. shirakii and mainland populations of S. nodosum are congruent. The overlapping ranges of habitat characteristics and hosts of S. nodosum and S. shirakii corroborate the chromosomal, molecular, and morphological data. CONCLUSIONS: Four independent sources of evidence (chromosomes, DNA, ecology, and morphology) support the conspecificity of S. nodosum and S. shirakii. We, therefore, synonymize S. shirakii with S. nodosum. This study provides a guide for applying the procedure of testing conspecificity to other sets of allopatric vectors.


Subject(s)
Genetic Variation , Polytene Chromosomes/genetics , Simuliidae/classification , Animals , Asia , Base Sequence , Ecology , Molecular Sequence Data , Myanmar , Sequence Analysis, DNA , Simuliidae/genetics , Species Specificity , Taiwan , Thailand , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...