Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(D1): D1262-D1272, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34875068

ABSTRACT

IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org/, is at the forefront of the immunogenetics and immunoinformatics fields with more than 30 years of experience. IMGT® makes available databases and tools to the scientific community pertaining to the adaptive immune response, based on the IMGT-ONTOLOGY. We focus on the recent features of the IMGT® databases, tools, reference directories and web resources, within the three main axes of IMGT® research and development. Axis I consists in understanding the adaptive immune response, by deciphering the identification and characterization of the immunoglobulin (IG) and T cell receptor (TR) genes in jawed vertebrates. It is the starting point of the two other axes, namely the analysis and exploration of the expressed IG and TR repertoires based on comparison with IMGT reference directories in normal and pathological situations (Axis II) and the analysis of amino acid changes and functions of 2D and 3D structures of antibody and TR engineering (Axis III).


Subject(s)
Adaptive Immunity/immunology , Databases, Genetic , Immunogenetics , Vertebrates/genetics , Adaptive Immunity/genetics , Animals , Antibodies/classification , Antibodies/immunology , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Vertebrates/immunology
2.
Front Immunol ; 11: 821, 2020.
Article in English | MEDLINE | ID: mdl-32431713

ABSTRACT

IMGT®, the international ImMunoGeneTics information system® is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and proteins of the IgSF and MhSF superfamilies. T cell receptors are divided into two groups, αß and γδ TR, which express distinct TR containing either α and ß, or γ and δ chains, respectively. The TRß locus (TRB) was recently described and annotated by IMGT® biocurators for several veterinary species, i.e., cat (Felis catus), dog (Canis lupus familiaris), ferret (Mustela putorius furo), pig (Sus scrofa), rabbit (Oryctolagus cuniculus), rhesus monkey (Macaca mulatta), and sheep (Ovis aries). The aim of the present study is to compare the genes of the TRB locus among these different veterinary species based on Homo sapiens. The results reveal that there are similarities but also differences including the number of genes by subgroup which may demonstrate duplications and/or deletions during evolution.


Subject(s)
Computational Biology/methods , Genes, T-Cell Receptor beta , Genetic Loci , Immunogenetics/methods , Receptors, Antigen, T-Cell, alpha-beta/genetics , Animals , Cats , Databases, Genetic , Dogs , Ferrets/genetics , Ferrets/immunology , Humans , Macaca mulatta/genetics , Macaca mulatta/immunology , Multigene Family , Phylogeny , Rabbits , Sheep/genetics , Sheep/immunology , Swine/genetics , Swine/immunology
3.
Front Immunol ; 10: 2541, 2019.
Article in English | MEDLINE | ID: mdl-31798572

ABSTRACT

In teleost fish as in mammals, humoral adaptive immunity is based on B lymphocytes expressing highly diverse immunoglobulins (IG). During B cell differentiation, IG loci are subjected to genomic rearrangements of V, D, and J genes, producing a unique antigen receptor expressed on the surface of each lymphocyte. During the course of an immune response to infections or immunizations, B cell clones specific of epitopes from the immunogen are expanded and activated, leading to production of specific antibodies. Among teleost fish, salmonids comprise key species for aquaculture. Rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) are especially important from a commercial point of view and have emerged as critical models for fish immunology. The growing interest to capture accurate and comprehensive antibody responses against common pathogens and vaccines has resulted in recent efforts to sequence the IG repertoire in these species. In this context, a unified and standardized nomenclature of salmonid IG heavy chain (IGH) genes is urgently required, to improve accuracy of annotation of adaptive immune receptor repertoire dataset generated by high-throughput sequencing (AIRRseq) and facilitate comparisons between studies and species. Interestingly, the assembly of salmonids IGH genomic sequences is challenging due to the presence of two large size duplicated IGH loci and high numbers of IG genes and pseudogenes. We used data available for Atlantic salmon to establish an IMGT standardized nomenclature of IGH genes in this species and then applied the IMGT rules to the rainbow trout IGH loci to set up a nomenclature, which takes into account the specificities of Salmonid loci. This unique, consistent nomenclature for Salmonid IGH genes was then used to construct IMGT sequence reference directories allowing accurate annotation of AIRRseq data. The complex issues raised by the genetic diversity of salmon and trout strains are discussed in the context of IG repertoire annotation.


Subject(s)
Genes, Immunoglobulin Heavy Chain , Molecular Sequence Annotation , Oncorhynchus mykiss/genetics , Salmo salar/genetics , Animals , Computational Biology , Gene Expression Regulation , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation/methods , Phylogeny , V(D)J Recombination
4.
Nucleic Acids Res ; 43(Database issue): D413-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25378316

ABSTRACT

IMGT(®), the international ImMunoGeneTics information system(®)(http://www.imgt.org) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH) and proteins of the IgSF and MhSF superfamilies. IMGT(®) is built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and 3D structures. The concepts include the IMGT(®) standardized keywords (identification), IMGT(®) standardized labels (description), IMGT(®) standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT(®) comprises 7 databases, 17 online tools and 15,000 pages of web resources, and provides a high-quality and integrated system for analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses, including NGS high-throughput data. Tools and databases are used in basic, veterinary and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. The IMGT/mAb-DB interface was developed for therapeutic antibodies and fusion proteins for immunological applications (FPIA). IMGT(®) is freely available at http://www.imgt.org.


Subject(s)
Databases, Genetic , Genes, Immunoglobulin , Genes, T-Cell Receptor , Histocompatibility Antigens/chemistry , Immunoglobulins/chemistry , Major Histocompatibility Complex , Receptors, Antigen, T-Cell/chemistry , Alleles , Animals , Biological Ontologies , Computational Biology , Histocompatibility Antigens/genetics , Humans , Immunogenetics , Immunoglobulins/genetics , Immunoglobulins/metabolism , Internet , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...