Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7743, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522338

ABSTRACT

The second Venus flyby of the BepiColombo mission offer a unique opportunity to make a complete tour of one of the few gas-dynamics dominated interaction regions between the supersonic solar wind and a Solar System object. The spacecraft pass through the full Venusian magnetosheath following the plasma streamlines, and cross the subsolar stagnation region during very stable solar wind conditions as observed upstream by the neighboring Solar Orbiter mission. These rare multipoint synergistic observations and stable conditions experimentally confirm what was previously predicted for the barely-explored stagnation region close to solar minimum. Here, we show that this region has a large extend, up to an altitude of 1900 km, and the estimated low energy transfer near the subsolar point confirm that the atmosphere of Venus, despite being non-magnetized and less conductive due to lower ultraviolet flux at solar minimum, is capable of withstanding the solar wind under low dynamic pressure.

2.
Sci Rep ; 10(1): 7932, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32404966

ABSTRACT

Cassini's Grand Finale orbits provided for the first time in-situ measurements of Saturn's topside ionosphere. We present the Pedersen and Hall conductivities of the top near-equatorial dayside ionosphere, derived from the in-situ measurements by the Cassini Radio and Wave Plasma Science Langmuir Probe, the Ion and Neutral Mass Spectrometer and the fluxgate magnetometer. The Pedersen and Hall conductivities are constrained to at least 10-5-10-4 S/m at (or close to) the ionospheric peak, a factor 10-100 higher than estimated previously. We show that this is due to the presence of dusty plasma in the near-equatorial ionosphere. We also show the conductive ionospheric region to be extensive, with thickness of 300-800 km. Furthermore, our results suggest a temporal variation (decrease) of the plasma densities, mean ion masses and consequently the conductivities from orbit 288 to 292.

3.
Phys Rev Lett ; 123(24): 245101, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922873

ABSTRACT

The first complete estimation of the compressible energy cascade rate |ϵ_{C}| at magnetohydrodynamic (MHD) and subion scales is obtained in Earth's magnetosheath using Magnetospheric MultiScale spacecraft data and an exact law derived recently for compressible Hall MHD turbulence. A multispacecraft technique is used to compute the velocity and magnetic gradients, and then all the correlation functions involved in the exact relation. It is shown that when the density fluctuations are relatively small, |ϵ_{C}| identifies well with its incompressible analog |ϵ_{I}| at MHD scales but becomes much larger than |ϵ_{I}| at subion scales. For larger density fluctuations, |ϵ_{C}| is larger than |ϵ_{I}| at every scale with a value significantly higher than for smaller density fluctuations. Our study reveals also that for both small and large density fluctuations, the nonflux terms remain always negligible with respect to the flux terms and that the major contribution to |ϵ_{C}| at subion scales comes from the compressible Hall flux.

4.
Science ; 362(6410)2018 10 05.
Article in English | MEDLINE | ID: mdl-30287633

ABSTRACT

The sizes of Saturn's ring particles range from meters (boulders) to nanometers (dust). Determination of the rings' ages depends on loss processes, including the transport of dust into Saturn's atmosphere. During the Grand Finale orbits of the Cassini spacecraft, its instruments measured tiny dust grains that compose the innermost D-ring of Saturn. The nanometer-sized dust experiences collisions with exospheric (upper atmosphere) hydrogen and molecular hydrogen, which forces it to fall from the ring into the ionosphere and lower atmosphere. We used the Magnetospheric Imaging Instrument to detect and characterize this dust transport and also found that diffusion dominates above and near the altitude of peak ionospheric density. This mechanism results in a mass deposition into the equatorial atmosphere of ~5 kilograms per second, constraining the age of the D-ring.

5.
Science ; 362(6410)2018 10 05.
Article in English | MEDLINE | ID: mdl-30287634

ABSTRACT

The Pioneer and Voyager spacecraft made close-up measurements of Saturn's ionosphere and upper atmosphere in the 1970s and 1980s that suggested a chemical interaction between the rings and atmosphere. Exploring this interaction provides information on ring composition and the influence on Saturn's atmosphere from infalling material. The Cassini Ion Neutral Mass Spectrometer sampled in situ the region between the D ring and Saturn during the spacecraft's Grand Finale phase. We used these measurements to characterize the atmospheric structure and material influx from the rings. The atmospheric He/H2 ratio is 10 to 16%. Volatile compounds from the rings (methane; carbon monoxide and/or molecular nitrogen), as well as larger organic-bearing grains, are flowing inward at a rate of 4800 to 45,000 kilograms per second.

6.
Phys Rev Lett ; 120(5): 055102, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481187

ABSTRACT

The first estimation of the energy cascade rate |ε_{C}| of magnetosheath turbulence is obtained using the Cluster and THEMIS spacecraft data and an exact law of compressible isothermal magnetohydrodynamics turbulence. The mean value of |ε_{C}| is found to be close to 10^{-13} J m^{-3} s^{-1}, at least 2 orders of magnitude larger than its value in the solar wind (∼10^{-16} J m^{-3} s^{-1} in the fast wind). Two types of turbulence are evidenced and shown to be dominated either by incompressible Alfvénic or compressible magnetosoniclike fluctuations. Density fluctuations are shown to amplify the cascade rate and its spatial anisotropy in comparison with incompressible Alfvénic turbulence. Furthermore, for compressible magnetosonic fluctuations, large cascade rates are found to lie mostly near the linear kinetic instability of the mirror mode. New empirical power-laws relating |ε_{C}| to the turbulent Mach number and to the internal energy are evidenced. These new findings have potential applications in distant astrophysical plasmas that are not accessible to in situ measurements.

7.
Science ; 359(6371): 66-68, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29229651

ABSTRACT

The ionized upper layer of Saturn's atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet's rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn's A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...