Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 64: 29-40, 2017 12.
Article in English | MEDLINE | ID: mdl-28963018

ABSTRACT

Advances in cartilage tissue engineering have led to constructs with mechanical integrity and biochemical composition increasingly resembling that of native tissues. In particular, collagen cross-linking with lysyl oxidase has been used to significantly enhance the mechanical properties of engineered neotissues. In this study, development of collagen cross-links over time, and correlations with tensile properties, were examined in self-assembling neotissues. Additionally, quantitative MRI metrics were examined in relation to construct mechanical properties as well as pyridinoline cross-link content and other engineered tissue components. Scaffold-free meniscus fibrocartilage was cultured in the presence of exogenous lysyl oxidase, and assessed at multiple time points over 8weeks starting from the first week of culture. Engineered constructs demonstrated a 9.9-fold increase in pyridinoline content, reaching 77% of native tissue values, after 8weeks of culture. Additionally, engineered tissues reached 66% of the Young's modulus in the radial direction of native tissues. Further, collagen cross-links were found to correlate with tensile properties, contributing 67% of the tensile strength of engineered neocartilages. Finally, examination of quantitative MRI metrics revealed several correlations with mechanical and biochemical properties of engineered constructs. This study displays the importance of culture duration for collagen cross-link formation, and demonstrates the potential of quantitative MRI in investigating properties of engineered cartilages. STATEMENT OF SIGNIFICANCE: This is the first study to demonstrate near-native cross-link content in an engineered tissue, and the first study to quantify pyridinoline cross-link development over time in a self-assembling tissue. Additionally, this work shows the relative contributions of collagen and pyridinoline to the tensile properties of collagenous tissue for the first time. Furthermore, this is the first investigation to identify a relationship between qMRI metrics and the pyridinoline cross-link content of an engineered collagenous tissue.


Subject(s)
Fibrocartilage/chemistry , Magnetic Resonance Imaging , Meniscus/chemistry , Protein-Lysine 6-Oxidase/chemistry , Tissue Scaffolds/chemistry , Animals , Cattle , Elastic Modulus
2.
Acta Biomater ; 11: 173-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25234157

ABSTRACT

A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were to: (i) determine the minimum seeding density, normalized by an area of 44 mm(2), necessary for the self-assembling process of fibrocartilage to occur; (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density; and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues.


Subject(s)
Cell Culture Techniques/methods , Chondrocytes/metabolism , Fibrocartilage/metabolism , Menisci, Tibial , Tissue Engineering/methods , Animals , Cattle , Cells, Cultured , Chondrocytes/cytology , Fibrocartilage/cytology , Rabbits
3.
Science ; 344(6179): 55-8, 2014 04 04.
Article in English | MEDLINE | ID: mdl-24674868

ABSTRACT

Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.


Subject(s)
Chromosomes, Fungal , Saccharomyces cerevisiae/genetics , Synthetic Biology/methods , Base Sequence , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , DNA, Fungal/genetics , Genes, Fungal , Genetic Fitness , Genome, Fungal , Genomic Instability , Introns , Molecular Sequence Data , Mutation , Polymerase Chain Reaction , RNA, Fungal/genetics , RNA, Transfer/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Sequence Analysis, DNA , Sequence Deletion , Transformation, Genetic
4.
Annu Rev Biomed Eng ; 15: 115-36, 2013.
Article in English | MEDLINE | ID: mdl-23701238

ABSTRACT

In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques that generate self-organizing and self-assembling tissues. This review aims to cogently describe this relatively new research area, with special focus on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These processes help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these engineered tissues, some of which are already in clinical trials, also approach native tissue values. This review endeavors to provide a cohesive summary of work in this field and to highlight the potential of self-organization and the self-assembling process for providing cogent solutions to currently intractable problems in tissue engineering.


Subject(s)
Regenerative Medicine/methods , Tissue Engineering/methods , Animals , Biomimetics , Cell Culture Techniques , Clinical Trials as Topic , Disease Models, Animal , Humans , Thermodynamics , Tissue Scaffolds/chemistry
5.
Biochem Biophys Res Commun ; 433(1): 133-8, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23458458

ABSTRACT

Knee meniscus fibrocartilage is frequently injured, resulting in approximately 1 million procedures annually in the US and Europe. Its near-avascularity contributes heavily to its inability to heal, and places it as a prime candidate for replacement through regenerative medicine. Here, we describe a novel approach to increase extracellular matrix organization, rather than content, in order to augment the mechanical properties of engineered tissue. To synthesize fibrocartilage, we employ a self-assembling process, which is free of exogenous scaffolds and relies on cell-to-cell interactions to form all-biologic constructs. When treated with the signaling phospholipid lysophosphatidic acid (LPA), tissue constructs displayed increased tensile properties and collagen organization, while total collagen content remained unchanged. LPA-treated constructs exhibited greater DNA content, indicative that the molecule exerted a signaling effect. Furthermore, LPA-treated cells displayed significant cytoskeletal reorganization. We conclude that LPA induced cytoskeletal reorganization and cell-matrix traction, which resulted in matrix reorganization and increased tensile properties. This study emphasizes the potential of non-traditional stimuli, such as signaling phospholipids, for use in tissue development studies. The extension of these results to other collagen-rich tissues represents a promising avenue for future exploration.


Subject(s)
Cartilage, Articular/drug effects , Cartilage, Articular/physiology , Extracellular Matrix/drug effects , Extracellular Matrix/physiology , Lysophospholipids/pharmacology , Tissue Engineering , Animals , Biomechanical Phenomena , Cattle , Chondrocytes/drug effects , Chondrocytes/physiology , Collagen/metabolism , Compressive Strength/drug effects , Compressive Strength/physiology , Cytoskeleton/drug effects , Cytoskeleton/physiology , Models, Biological , Signal Transduction/drug effects , Tensile Strength/drug effects , Tensile Strength/physiology , Tissue Culture Techniques
6.
Biomaterials ; 32(30): 7411-31, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21764438

ABSTRACT

Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest toward the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest toward new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-ß1, C-ABC) and mechanical stimuli (e.g., direct compression, hydrostatic pressure) have also been investigated, both in terms of encouraging functional tissue formation, as well as in differentiating stem cells. Even though the problems accompanying meniscus tissue engineering research are considerable, we are undoubtedly in the dawn of a new era, whereby recent advances in biology, engineering, and medicine are leading to the successful treatment of meniscal lesions.


Subject(s)
Menisci, Tibial/physiology , Menisci, Tibial/physiopathology , Regeneration , Tissue Engineering/methods , Animals , Biomechanical Phenomena , Humans , Menisci, Tibial/anatomy & histology , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...