Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Membranes (Basel) ; 13(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37103873

ABSTRACT

Transforming growth factor ß1 (TGF-ß1) is critical to cell differentiation, proliferation, and apoptosis. It is important to understand the binding affinity between TGF-ß1 and its receptors. In this study, their binding force was measured using an atomic force microscope. Significant adhesion was induced by the interaction between the TGF-ß1 immobilized on the tip and its receptor reconstituted in the bilayer. Rupture and adhesive failure occurred at a specific force around 0.4~0.5 nN. The relationship of the force to loading rate was used to estimate the displacement where the rupture occurred. The binding was also monitored in real time with surface plasmon resonance (SPR) and interpreted with kinetics to acquire the rate constant. Using the Langmuir adsorption, the SPR data were analyzed to estimate equilibrium and association constants to be approximately 107 M-1 and 106 M-1 s-1. These results indicated that the natural release of the binding seldom occurred. Furthermore, the degree of binding dissociation, confirmed by the rupture interpretation, supported that the reverse of the binding hardly happened.

2.
Molecules ; 28(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36985713

ABSTRACT

The vesicle mechanical behaviors were studied upon its exposure to 3-hydroxybutyric acid using an atomic force microscope (AFM). Dipalmitoylphosphatidylcholine (DPPC) and 3-hydroxybutyric acid were used to manufacture the vesicles at their desired ratio. The deflection of an AFM probe with respect to its displacement was measured after characterizing the vesicle adsorption. The movement was analyzed with the Hertzian model to understand the physical behavior of the vesicles. However, in the deflection just prior to the first penetration, the model was a good fit, and the vesicle mechanical moduli were calculated. The moduli became lower with the higher ratio of 3-hydroxybutyric acid to DPPC, but the moduli were saturated at 0.5 of the ratio. These results appear to be the basis for the function of the metabolism associated with 3-hydroxybutyric acid, i.e., anesthetization and glycemic control, on the physical properties of cell membranes.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine , 3-Hydroxybutyric Acid , Microscopy, Atomic Force/methods , Adsorption
3.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36233033

ABSTRACT

An amorphous curcumin (CUR) and bovine serum albumin (BSA) nanoparticle complex (nanoplex) was previously developed as a promising anticancer nanotherapy. The CUR-BSA nanoplex had been characterized in its aqueous suspension form. The present work developed a dry-powder form of the CUR-BSA nanoplex by lyophilization using sucrose as a cryoprotectant. The cryoprotective activity of sucrose was examined at sucrose mass fractions of 33.33, 50.00, and 66.66% by evaluating the lyophilized nanoplex's (1) aqueous reconstitution and (2) CUR dissolution and kinetic solubility. The physicochemical stabilizing effects of sucrose upon the nanoplex's 30-day exposures to 40 °C and 75% relative humidity were examined from (i) aqueous reconstitution, (ii) CUR dissolution, (iii) CUR and BSA payloads, (iv) amorphous form stability, and (v) BSA's structural integrity. The good cryoprotective activity of sucrose was evidenced by the preserved BSA's integrity and good aqueous reconstitution, resulting in a fast CUR dissolution rate and a high kinetic solubility (≈5-9× thermodynamic solubility), similar to the nanoplex suspension. While the aqueous reconstitution, CUR dissolution, and amorphous form were minimally affected by the elevated heat and humidity exposures, the treated nanoplex exhibited a lower BSA payload (≈7-26% loss) and increased protein aggregation postexposure. The adverse effects on the BSA payload and aggregation were minimized at higher sucrose mass fractions.


Subject(s)
Curcumin , Nanoparticles , Curcumin/chemistry , Curcumin/pharmacology , Drug Carriers/chemistry , Freeze Drying , Nanoparticles/chemistry , Powders , Protein Aggregates , Serum Albumin, Bovine , Solubility , Sucrose
4.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296873

ABSTRACT

The mechanical properties of vesicles were investigated as they were prepared, according to the ratio of mucin to dipalmitoylphosphatidylcholine (DPPC), using an atomic force microscope (AFM). After the confirmation of the vesicle adsorption on a mica surface, an AFM-tip deflection, caused by the interaction between the tip and the vesicle, was measured. The deflection showed that the tip broke through into the vesicle twice. Each break meant a tip-penetration into the upper and lower portion of the vesicle. Only the first penetration allowed the Hertzian model available to estimate the vesicle mechanical moduli. Two moduli reduced as the ratio of mucin to DPPC increased to 0.5, but the moduli were little changed above the 0.5 ratio. These results seem to be a platform for the effect of the mucin on the plasma-membrane anchoring and cellular signaling.

5.
Pharmaceutics ; 14(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36297450

ABSTRACT

Highly hygroscopic pharmaceutical and nutraceutical solids are prone to significant changes in their physicochemical properties due to chemical degradation and/or solid-state transition, resulting in adverse effects on their therapeutic performances and shelf life. Moisture absorption also leads to excessive wetting of the solids, causing their difficult handling during manufacturing. In this review, four formulation strategies that have been employed to tackle hygroscopicity issues in oral solid dosage forms of pharmaceuticals/nutraceuticals were discussed. The four strategies are (1) film coating, (2) encapsulation by spray drying or coacervation, (3) co-processing with excipients, and (4) crystal engineering by co-crystallization. Film coating and encapsulation work by acting as barriers between the hygroscopic active ingredients in the core and the environment, whereas co-processing with excipients works mainly by adding excipients that deflect moisture away from the active ingredients. Co-crystallization works by altering the crystal packing arrangements by introducing stabilizing co-formers. For hygroscopic pharmaceuticals, coating and co-crystallization are the most commonly employed strategies, whereas coating and encapsulation are popular for hygroscopic nutraceuticals (e.g., medicinal herbs, protein hydrolysates). Encapsulation is rarely applied on hygroscopic pharmaceuticals, just as co-crystallization is rarely used for hygroscopic nutraceuticals. Therefore, there is potential for improved hygroscopicity reduction by exploring beyond the traditionally used strategy.

6.
Pharmaceutics ; 14(5)2022 May 02.
Article in English | MEDLINE | ID: mdl-35631565

ABSTRACT

Amorphization, typically in the form of amorphous solid dispersion (ASD), represents a well-established solubility enhancement strategy for poorly soluble drugs. Recently, two amorphous drug formulations, i.e., the amorphous drug-polyelectrolyte nanoparticle complex (nanoplex) and co-amorphous system, have emerged as promising alternatives to circumvent the issues faced by ASD (i.e., large dosage requirement, high hygroscopicity). In the present work, the nanoplex was benchmarked against the co-amorphous system in terms of the preparation efficiency, drug payload, thermal stability, dissolution rate, supersaturation generation, and accelerated storage stability. Weakly acidic curcumin (CUR) and weakly basic ciprofloxacin (CIP) were used as the model poorly soluble drugs. The CUR and CIP nanoplexes were prepared using chitosan and sodium dextran sulfate as the polyelectrolytes, respectively. The co-amorphous CUR and CIP were prepared using tannic acid and tryptophan as the co-formers, respectively. The benchmarking results showed that the amorphous drug nanoplex performed as well as, if not better than, the co-amorphous system depending on the drug in question and the aspects being compared. The present work successfully established the nanoplex as an equally viable amorphous drug formulation as the more widely studied co-amorphous system to potentially serve as an alternative to ASD.

7.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328803

ABSTRACT

Greater awareness of environmental sustainability has driven many industries to transition from using synthetic organic solvents to greener solvents in their manufacturing. Deep eutectic solvents (DESs) have emerged as a highly promising category of green solvents with well-demonstrated and wide-ranging applications, including their use as a solvent in extraction of small-molecule bioactive compounds for food and pharmaceutical applications. The use of DES as an extraction solvent of biological macromolecules, on the other hand, has not been as extensively studied. Thereby, the feasibility of employing DES for biomacromolecule extraction has not been well elucidated. To bridge this gap, this review provides an overview of DES with an emphasis on its unique physicochemical properties that make it an attractive green solvent (e.g., non-toxicity, biodegradability, ease of preparation, renewable, tailorable properties). Recent advances in DES extraction of three classes of biomacromolecules-i.e., proteins, carbohydrates, and lipids-were discussed and future research needs were identified. The importance of DES's properties-particularly its viscosity, polarity, molar ratio of DES components, and water addition-on the DES extraction's performance were discussed. Not unlike the findings from DES extraction of bioactive small molecules, DES extraction of biomacromolecules was concluded to be generally superior to extraction using synthetic organic solvents.


Subject(s)
Deep Eutectic Solvents , Water , Plant Extracts/chemistry , Solvents/chemistry , Water/chemistry
8.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502305

ABSTRACT

Oral delivery of curcumin (CUR) has limited effectiveness due to CUR's poor systemic bioavailability caused by its first-pass metabolism and low solubility. Buccal delivery of CUR nanoparticles can address the poor bioavailability issue by virtue of avoidance of first-pass metabolism and solubility enhancement afforded by CUR nanoparticles. Buccal film delivery of drug nanoparticles, nevertheless, has been limited to low drug payload. Herein, we evaluated the feasibilities of three mucoadhesive polysaccharides, i.e., hydroxypropyl methylcellulose (HPMC), starch, and hydroxypropyl starch as buccal films of amorphous CUR-chitosan nanoplex at high CUR payload. Both HPMC and starch films could accommodate high CUR payload without adverse effects on the films' characteristics. Starch films exhibited far superior CUR release profiles at high CUR payload as the faster disintegration time of starch films lowered the precipitation propensity of the highly supersaturated CUR concentration generated by the nanoplex. Compared to unmodified starch, hydroxypropyl starch films exhibited superior CUR release, with sustained release of nearly 100% of the CUR payload in 4 h. Hydroxypropyl starch films also exhibited good payload uniformity, minimal weight/thickness variations, high folding endurance, and good long-term storage stability. The present results established hydroxypropyl starch as the suitable mucoadhesive polysaccharide for high-payload buccal film applications.


Subject(s)
Chitosan/chemistry , Curcumin/chemistry , Drug Delivery Systems , Hypromellose Derivatives/chemistry , Mouth Mucosa/chemistry , Nanoparticles/chemistry , Starch/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chelating Agents/chemistry , Drug Carriers/chemistry , Humans , Solubility
9.
Eur J Pharm Sci ; 161: 105787, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33684485

ABSTRACT

Complexation of ionized hydrophilic drugs with counterions (e.g. polyelectrolytes, ionic amphiphiles, multivalent salt ions) represents a well-established formulation approach to produce sustained release of highly soluble drugs while maintaining a high drug payload. This renders the drug-ion complex an attractive alternative to the conventional polymer matrix systems. The effects of the counterion's type on the sustained release characteristics of drug-ion complexes, however, have not been investigated before under the same dissolution environment. Using antibiotic tetracycline hydrochloride (TC•HCl) as the model hydrophilic drug, we investigated the effects of three types of counterions, sodium dextran sulfate (DXT), sodium dodecyl sulfate (SDS), and K2HPO4, on (1) the sustained release characteristics, (2) long-term storage stability, (3) preparation efficiency (i.e. yield, payload), and (4) antibiotic activity of the resultant (TC•HCl)-ion complexes. The results showed that the three complexes exhibited comparable TC•HCl payloads at approximately 80% (w/w) and yield between 40 and 60% (w/w). They also exhibited good storage stability after 18 months and uncompromised antibiotic activity compared to the native drug. In the intestinal fluid, all three complexes could produce sustained drug release profiles, albeit at different rates ((TC•HCl)-DXT > (TC•HCl)-SDS > (TC•HCl)-HPO4), whereas in the gastric fluid, only the (TC•HCl)-DXT complex could produce a sustained release profile suitable for oral delivery. The different sustained release profiles among the complexes were attributed to their different solid forms (amorphous versus crystalline), hydrophobicity, solubility, and drug release mechanisms. The present work highlighted the importance of selecting the most suitable counterion to achieve the desired sustained drug release profile.


Subject(s)
Tetracycline , Delayed-Action Preparations , Ions , Polyelectrolytes , Solubility
10.
Int J Mol Sci ; 22(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546487

ABSTRACT

Quercetin (QUE)-a plant-derived flavonoid, is recently established as an effective quorum sensing (QS) inhibiting agent in Pseudomonas aeruginosa-the main bacterial pathogen in bronchiectasis lungs. Successful clinical application of QUE, however, is hindered by its low solubility in physiological fluids. Herein we developed a solubility enhancement strategy of QUE in the form of a stable amorphous nanoparticle complex (nanoplex) of QUE and chitosan (CHI), which was prepared by electrostatically driven complexation between ionized QUE molecules and oppositely charged CHI. At its optimal preparation condition, the QUE-CHI nanoplex exhibited a size of roughly 150 nm with a 25% QUE payload and 60% complexation efficiency. The complexation with CHI had no adverse effect on the antibacterial and anticancer activities of QUE, signifying the preservation of QUE's bioactivities in the nanoplex. Compared to the native QUE, the QUE-CHI nanoplex exhibited superior QS inhibition in suppressing the QS-regulated swimming motility and biofilm formation of P. aeruginosa, but not in suppressing the virulence factor production. The superior inhibitions of the biofilm formation and swimming motility afforded by the nanoplex were attributed to (1) its higher kinetic solubility (5-times higher) that led to higher QUE exposures, and (2) the synergistic QS inhibition attributed to its CHI fraction.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Quorum Sensing/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biofilms/drug effects , Bronchiectasis/drug therapy , Bronchiectasis/etiology , Chemical Phenomena , Chitosan/chemistry , Drug Carriers/chemistry , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Structure , Nanoparticles/chemistry , Particle Size , Pseudomonas Infections/complications , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pulmonary Disease, Chronic Obstructive/complications , Quercetin/chemistry , Solubility , Spectrum Analysis
11.
Colloids Surf B Biointerfaces ; 193: 111095, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32416520

ABSTRACT

Antibiotic-polyelectrolyte nanoparticle complex (or nanoplex in short) has been recently demonstrated as a superior antibiotic delivery system to the native antibiotic in bronchiectasis therapy owed to its ability to overcome the lung's mucus barrier and generate high localized antibiotic exposure in the infected sites. The present work aimed to further improve the mucus permeability, hence the antibacterial efficacy of the nanoplex, by incorporating mucolytic enzyme papain (PAP) at the nanoplex formation step to produce PAP-decorated antibiotic-polyelectrolyte nanoplex exhibiting built-in mucolytic capability. Ciprofloxacin (CIP) and dextran sulfate (DXT) were used as the models for antibiotics and polyelectrolyte, respectively. The results showed that the PAP inclusion had minimal effects on the physical characteristics, preparation efficiency, and dissolution of the CIP-DXT nanoplex. The optimal CIP-(DXT-PAP) nanoplex exhibited size and zeta potential of approximately 200 nm and -50 mV with CIP and PAP payloads of 60% and 32% (w/w), respectively. The nanoplex was prepared at high efficiency with larger than 80% CIP and PAP utilization rates. The CIP-(DXT-PAP) nanoplex exhibited tenfold improvement in the mucus permeability compared to its CIP-DXT nanoplex counterpart, resulting in the former's superior bactericidal activity against clinical Pseudomonas aeruginosa biofilm in the presence of mucus barrier. A trade-off, nevertheless, existed between antibacterial efficacy and cytotoxicity towards human lung epithelium cells upon the incorporation of PAP above a certain concentration threshold. Therefore, the optimal dosing of the CIP-(DXT-PAP) nanoplex must be carefully determined.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bronchiectasis/drug therapy , Ciprofloxacin/pharmacology , Dextran Sulfate/pharmacology , Nanoparticles/chemistry , Papain/chemistry , Polyelectrolytes/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biofilms/drug effects , Bronchiectasis/microbiology , Ciprofloxacin/chemistry , Ciprofloxacin/metabolism , Dextran Sulfate/chemistry , Dextran Sulfate/metabolism , Drug Delivery Systems , Humans , Microbial Sensitivity Tests , Nanoparticles/metabolism , Papain/metabolism , Particle Size , Polyelectrolytes/chemistry , Polyelectrolytes/metabolism , Pseudomonas aeruginosa/drug effects , Surface Properties
12.
Int J Pharm ; 575: 119007, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31893545

ABSTRACT

While the solubility enhancement capability of amorphous drug-polyelectrolyte nanoparticle complex (nanoplex) has been widely established, its amorphous form stability during long-term storage is often lacking for poorly-soluble drugs with high crystallization propensity, such as curcumin (CUR). Herein we presented a new stabilization strategy of amorphous CUR nanoplex using a secondary small-molecule drug - ibuprofen (IBU) - as the auxiliary stabilizer to the polyelectrolytes (i.e. chitosan). The results showed that, unlike the single-drug CUR nanoplex, the dual-drug CUR-IBU nanoplex with CUR/IBU payload ratio of 1.7 remained stable after 24-month storage. The CUR-IBU nanoplex also exhibited superior CUR solubility enhancement (4-fold higher) than the CUR nanoplex. These improvements, however, were not evident for the CUR-IBU nanoplex prepared at higher CUR/IBU payload ratio of 14 due to insufficient IBU presence. Compared to the CUR nanoplex, the CUR-IBU nanoplex exhibited smaller size with less spherical morphology (100 nm), higher zeta potential (42 versus 19 mV), lower total drug payload (73% versus 83%), and lower CUR utilization rate (53% versus 94%) due to the competition with IBU in the drug-PE complexation. These results successfully established the use of a secondary drug to not only stabilized, but also improved solubility enhancement of amorphous drug nanoplex systems.


Subject(s)
Curcumin/chemistry , Drug Carriers/chemistry , Ibuprofen/chemistry , Nanoparticles/chemistry , Technology, Pharmaceutical/methods , Chitosan/chemistry , Drug Stability , Microscopy, Electron, Scanning , Particle Size , Polyelectrolytes/chemistry , Solubility
13.
Int J Biol Macromol ; 139: 500-508, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31386874

ABSTRACT

Amorphous drug-polyanion nanoplex represents an effective solubility enhancement strategy of weakly-basic poorly-soluble drugs. While dextran sulfate (DXT) was chosen in most studies as the polyanion for nanoplex formation, drug-DXT nanoplex demonstrated poor long-term physical stability for drugs with high crystallization propensity, such as ciprofloxacin (CIP). Herein we hypothesized that amorphous form stability of CIP nanoplex could be improved by substituting DXT with carboxymethyl cellulose (CMC) known for its crystallization inhibiting activity. The optimal preparation condition of the CIP-CMC nanoplex was determined by investigating the effects of CMC/CIP charge ratio and pH on the resultant nanoplex's physical characteristics and preparation efficiency. At the optimal condition, the CIP-CMC nanoplex possessed size, zeta potential, and CIP payload of approximately 200 nm, -49 mV, and 76%, respectively. Its preparation was highly efficient with CIP utilization rate and overall yield of roughly 89% and 46%, respectively. Compared to the CIP-DXT nanoplex, the CIP-CMC nanoplex was larger and with higher CIP payload attributed to CMC's higher chain stiffness. The CIP-CMC nanoplex exhibited superior physical stability after twelve-month storage and improved solubility enhancement capability (30% higher), despite its slower dissolution. These results clearly established CMC as the superior polyanion to DXT for nanoplex formation of weakly-basic drugs.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Dextran Sulfate/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Polyelectrolytes/chemistry , Polymers/chemistry , Colloids/chemistry , Drug Stability , Hydrogen-Ion Concentration , Particle Size , Solubility , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
14.
Eur J Pharm Sci ; 138: 105035, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31386892

ABSTRACT

Amorphous drug-polyelectrolyte nanoparticle complex (or nanoplex in short) has emerged as a highly attractive solubility enhancement strategy of poorly-soluble drugs attributed to its simple and highly efficient preparation. The existing nanoplex formulation, however, exhibits poor amorphous form stability during long-term storage for drugs with high crystallization propensity. Using ciprofloxacin (CIP) and sodium dextran sulfate (DXT) as the model drug-polyelectrolyte nanoplex, we investigated the feasibility of incorporating crystallization inhibiting agents, i.e. hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), at the nanoplex formation step to improve the physical stability of the CIP nanoplex. The effects of the HPMC or PVP additions on the nanoplex's physical characteristics (i.e. size, zeta potential, CIP payload), CIP utilization rate, dissolution rate, and supersaturation generation were also examined. The results showed that the additions of HPMC or PVP increased the CIP nanoplex size (from 300 to 500 nm) and CIP utilization rate (from 65% to 90% w/w) with minimal impacts on the CIP payload (70-80% w/w). Their additions had opposite impacts on the nanoplex's colloidal stability due to surfactant nature of PVP. Significantly, unlike the CIP-DXT and CIP-DXT-PVP nanoplexes, the CIP-DXT-HPMC nanoplex remained amorphous after three-month accelerated storage, while also exhibited superior solubility enhancement (15-30% higher).


Subject(s)
Hypromellose Derivatives/chemistry , Nanoparticles/chemistry , Polyelectrolytes/chemistry , Povidone/chemistry , Ciprofloxacin/chemistry , Crystallization/methods , Dextran Sulfate/chemistry , Drug Carriers/chemistry , Particle Size , Solubility/drug effects
15.
Mater Sci Eng C Mater Biol Appl ; 98: 54-64, 2019 May.
Article in English | MEDLINE | ID: mdl-30813056

ABSTRACT

While the wound healing activity of curcumin (CUR) has been well-established, its clinical effectiveness remains limited due to the inherently low aqueous CUR solubility, resulting in suboptimal CUR exposure in the wound sites. Previously, we developed high-payload amorphous nanoparticle complex (or nanoplex) of CUR and chitosan (CHI) capable of CUR solubility enhancement by drug-polyelectrolyte complexation. The CUR-CHI nanoplex, however, exhibited poor colloidal stability due to its strong agglomeration tendency. Herein we hypothesized that the colloidal stability could be improved by replacing CHI with its oligomers (OCHI) owed to the better charge distribution in OCHI. The effects of key parameters in drug-polyelectrolyte complexation (i.e. pH, salt inclusion, CUR concentration, and OCHI/CUR charge ratio) on the physical characteristics and preparation efficiency of the CUR-OCHI nanoplex produced were investigated. The in vivo wound healing efficacy of the CUR-OCHI nanoplex and its cytotoxicity towards human keratinocytes cells were examined. The results showed that CUR-OCHI nanoplex exhibited prolonged colloidal stability (72 h versus <24 h for the CUR-CHI nanoplex). At the optimal condition, the CUR-OCHI nanoplex (without ultrasonication) exhibited size, zeta potential, and CUR payload of ≈140 nm, 20 mV, and 78% (w/w), respectively. The nanoplex preparation was simple yet robust at nearly 100% CUR utilization rate. The CUR-OCHI nanoplex exhibited superior wound healing efficacy to the native CUR with wound closure of >90% after 7 days versus 9 days for the native CUR resulting in smaller scars, attributed to its generation of high CUR concentration in the wound sites.


Subject(s)
Chitin/analogs & derivatives , Chitosan/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Nanoparticles/chemistry , Cells, Cultured , Chitin/chemistry , Drug Carriers/chemistry , Humans , Keratinocytes/drug effects , Oligosaccharides , Wound Healing/drug effects
16.
Int J Pharm ; 559: 382-392, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30731256

ABSTRACT

Inhaled antibiotic nanoparticles have emerged as an effective strategy to control infection in bronchiectasis lung owed to their mucus-penetrating ability. Using ciprofloxacin (CIP) as the model antibiotic, we evaluated dry powder inhaler (DPI) formulations of two classes of antibiotic nanoparticles (i.e. liposome and nanoplex) in their (1) physical characteristics (i.e. size, zeta potential, CIP payload, preparation efficiency), (2) dissolution in artificial sputum medium, (3) ex vivo mucus permeability, (4) antimicrobial activity against Pseudomonas aeruginosa in mucus, (5) cytotoxicity towards human lung epithelium cells, and (6) in vitro aerosolization efficiency. The results showed that the CIP nanoplex exhibited fast dissolution with CIP supersaturation generation, in contrast to the slower release of the liposome (80 versus 30% dissolution after 1 h). Both nanoparticles readily overcame the mucus barrier attributed to their nanosize and mucus-inert surface (50% permeation after 1 h), leading to their similarly high antipseudomonal activity. The CIP liposome, however, possessed much lower CIP payload than the nanoplex (84% versus 3.5%), resulting in high lipid contents in its DPI formulation that led to higher cytotoxicity and lower aerosolization efficiency. The CIP nanoplex thus represented a superior formulation owed to its simpler preparation, higher CIP payload hence lower dosage, better aerosolization, and lower cytotoxicity.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bronchiectasis/drug therapy , Liposomes/chemistry , Nanoparticles/chemistry , A549 Cells , Administration, Inhalation , Adult , Cell Line, Tumor , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Dry Powder Inhalers/methods , Epithelium/drug effects , Humans , Lung/drug effects , Mucus/drug effects , Particle Size , Permeability/drug effects , Powders/chemistry , Powders/pharmacology , Pseudomonas aeruginosa/drug effects , Young Adult
17.
Drug Dev Ind Pharm ; 45(1): 105-116, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30196726

ABSTRACT

OBJECTIVES: To carry out a proof-of-concept study on the development of dual-drug amorphous nanoparticle complex (nanoplex in short) as a potential formulation platform for fixed-dose combination (FDC) of poorly-soluble drugs. SIGNIFICANCE: FDC has been proven effective in improving patient compliance for treatment that requires complex multidrug regimen. Currently, there is growing interest to develop FDC of poorly-soluble drugs due to the increased number of drugs exhibiting poor solubility thus low bioavailability. METHODS: The dual-drug nanoplex was prepared by electrostatically-driven co-complexation of drug molecules with oppositely charged dextran sulfate, using ciprofloxacin (CIP) and itraconazole (ITZ) as the model poorly-soluble drugs. RESULTS: We first verified that the co-complexation products were dual-drug CIP-ITZ nanoplex, and not binary mixtures of the single-drug CIP and ITZ nanoplexes, by demonstrating their distinct thermal behaviors and dissolution characteristics. Depending on the preparation condition, the dual-drug nanoplex exhibited size and zeta potential of 160-410 nm and -35-50 mV, respectively. The individual drug payloads were readily manipulated by varying the CIP/ITZ mass ratio in the feed, resulting in CIP and ITZ payloads in the range of 60-30% and 15-45%, respectively. The CIP-ITZ nanoplex, however, exhibited diminished CIP supersaturation generation, thus lower CIP solubility enhancement, compared to the single-drug CIP nanoplex. The CIP-ITZ nanoplex, nonetheless, remained capable of generating high ITZ supersaturation level. CONCLUSION: Dual-drug nanoplex was successfully prepared with a high degree of control over its physical characteristics. Nevertheless, whether dual-drug nanoplex always exhibits diminished solubility enhancement compared to its single-drug counterparts needs to be investigated using different poorly-soluble drugs.


Subject(s)
Ciprofloxacin/chemical synthesis , Drug Carriers/chemical synthesis , Itraconazole/chemical synthesis , Nanoparticles/chemistry , Proof of Concept Study , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/administration & dosage , Antifungal Agents/chemical synthesis , Ciprofloxacin/administration & dosage , Drug Carriers/administration & dosage , Drug Combinations , Itraconazole/administration & dosage , Nanoparticles/administration & dosage , Solubility
18.
Int J Pharm ; 547(1-2): 368-376, 2018 Aug 25.
Article in English | MEDLINE | ID: mdl-29886096

ABSTRACT

Non-cystic fibrosis bronchiectasis (NCFB) characterized by permanent bronchial dilatation and recurrent infections has been clinically managed by long-term intermittent inhaled antibiotic therapy among other treatments. Herein we investigated dry powder inhaler (DPI) formulation of ciprofloxacin (CIP) nanoplex with mannitol/lactose as the excipient for NCFB therapy. The DPI of CIP nanoplex was evaluated against DPI of native CIP in terms of their (1) dissolution characteristics in artificial sputum medium, (2) ex vivo mucus permeability in sputum from NCFB and healthy individuals, (3) antibacterial efficacy in the presence of sputum against clinical Pseudomonas aeruginosa strains (planktonic and biofilm), and (4) cytotoxicity towards human lung epithelial cells. Despite their similarly fast dissolution rates in sputum, the DPI of CIP nanoplex exhibited superior mucus permeability to the native CIP (5-7 times higher) attributed to its built-in ability to generate highly supersaturated CIP concentration in the sputum. The superior mucus permeability led to the CIP nanoplex's higher antibacterial efficacy (>3 log10 CFU/mL). The DPI of CIP nanoplex exhibited similar cytotoxicity towards the lung epithelial cells as the native CIP indicating its low risk of toxicity. These results established the promising potential of DPI of CIP nanoplex as a new therapeutic avenue for NCFB.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bronchiectasis/drug therapy , Ciprofloxacin/administration & dosage , Pseudomonas aeruginosa/drug effects , Administration, Inhalation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Case-Control Studies , Chemistry, Pharmaceutical/methods , Ciprofloxacin/pharmacology , Ciprofloxacin/toxicity , Drug Delivery Systems , Dry Powder Inhalers , Excipients/chemistry , Humans , Lactose/chemistry , Lung/drug effects , Lung/metabolism , Lung/pathology , Mannitol/chemistry , Mucus/metabolism , Permeability
19.
Colloids Surf B Biointerfaces ; 167: 483-491, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29727835

ABSTRACT

The low aqueous solubility of curcumin (CUR) had greatly limited the clinical efficacy of CUR therapy despite its well-known potent therapeutic activities. Previously, we developed amorphous nanoparticle complex (nanoplex) of CUR and chitosan (CHI) as a solubility enhancement strategy of CUR by electrostatically-driven drug-polyelectrolyte complexation. The CUR-CHI nanoplex, however, (1) lacked a built-in ability to produce prolonged high apparent solubility of CUR in the absence of crystallization-inhibiting agents, and (2) exhibited poor physical stability during long-term storage. For this reason, herein we developed amorphous ternary nanoplex of CUR, CHI, and hypromellose (HPMC) where HPMC functioned as the crystallization inhibitor. The effects of incorporating HPMC on the (1) physical characteristics and (2) preparation efficiency of the CUR-CHI-HPMC nanoplex produced were investigated. Compared to the CUR-CHI nanoplex, the HPMC inclusion led to larger nanoplex (≈300-500 nm) having lower zeta potential (≈1-15 mV) and lower CUR payload (≈40-80%), albeit with higher CUR utilization rates (≈100%) attributed to the CUR interactions with both CHI and HPMC. The CUR-CHI-HPMC nanoplex's physical characteristics could be controlled by varying the HPMC to CHI ratio in the feed. Subsequently, the CUR-CHI-HPMC and CUR-CHI nanoplexes were examined in terms of their (1) storage stability, (2) dissolution characteristics in simulated gastrointestinal fluids, and (3) in vitro solubility enhancement. The results showed that the CUR-CHI-HPMC nanoplex exhibited superior (i) amorphous state stability after twelve-month storage, (ii) dissolution characteristics, and (iii) solubility enhancement in simulated gastrointestinal fluids, with minimal cytotoxicity towards human gastric epithelial cells.


Subject(s)
Chitosan/chemistry , Curcumin/chemistry , Hypromellose Derivatives/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Cells, Cultured , Curcumin/pharmacology , Drug Carriers/chemistry , Epithelial Cells/drug effects , Gastric Mucosa/cytology , Humans , Microscopy, Electron, Scanning/methods , Nanoparticles/ultrastructure , Particle Size , Solubility
20.
Eur J Pharm Sci ; 114: 356-363, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29309874

ABSTRACT

The numerous health benefits of curcumin (CUR) have not been fully realized due to its low aqueous solubility, resulting in poor bioavailability. While amorphization of CUR via amorphous solid dispersion (ASD) represents a well-established CUR solubility enhancement strategy, simultaneous amorphization and nanonization of CUR via amorphous CUR nanoparticles (or nano-CUR in short) have emerged only recently as the plausibly superior alternative to ASD. Herein we examined for the first time the amorphous nano-CUR versus the ASD of CUR in terms of their (1) in vitro solubility enhancement capability and (2) long-term physical stability. The ASD of CUR was prepared by spray drying with hydroxypropylmethylcellulose (HPMC) acting as crystallization inhibitor. The amorphous nano-CUR was investigated in both its (i) aqueous suspension and (ii) dry-powder forms in which the latter was prepared by spray drying with adjuvants (i.e. HPMC, trehalose, and soy lecithin). The results showed that the amorphous nano-CUR (in both its aqueous suspension and dry-powder forms) exhibited superior solubility enhancement to the ASD of CUR attributed to its faster dissolution rates. This was despite the ASD formulation contained a larger amount of HPMC. The superior solubility enhancement, however, came at the expense of low physical stability, where the amorphous nano-CUR showed signs of transformation to crystalline after three-month accelerated storage, which was not observed with the ASD. Thus, despite its inferior solubility enhancement, the conventional ASD of CUR was found to represent the more feasible CUR solubility enhancement strategy.


Subject(s)
Chemistry, Pharmaceutical/methods , Curcumin/chemical synthesis , Curcumin/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Crystallization , Drug Stability , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...