Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 122(7): 1256-65, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23699601

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer composed of at least 2 molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease. Here we provide a whole-genome-sequencing-based perspective of DLBCL mutational complexity by characterizing 40 de novo DLBCL cases and 13 DLBCL cell lines and combining these data with DNA copy number analysis and RNA-seq from an extended cohort of 96 cases. Our analysis identified widespread genomic rearrangements including evidence for chromothripsis as well as the presence of known and novel fusion transcripts. We uncovered new gene targets of recurrent somatic point mutations and genes that are targeted by focal somatic deletions in this disease. We highlight the recurrence of germinal center B-cell-restricted mutations affecting genes that encode the S1P receptor and 2 small GTPases (GNA13 and GNAI2) that together converge on regulation of B-cell homing. We further analyzed our data to approximate the relative temporal order in which some recurrent mutations were acquired and demonstrate that ongoing acquisition of mutations and intratumoral clonal heterogeneity are common features of DLBCL. This study further improves our understanding of the processes and pathways involved in lymphomagenesis, and some of the pathways mutated here may indicate new avenues for therapeutic intervention.


Subject(s)
Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , DNA Copy Number Variations/genetics , Genome, Human , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation/genetics , GTP-Binding Protein alpha Subunits, G12-G13/chemistry , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
2.
BMC Bioinformatics ; 14: 167, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23714400

ABSTRACT

BACKGROUND: In the past decade, bioinformatics tools have matured enough to reliably perform sophisticated primary data analysis on Next Generation Sequencing (NGS) data, such as mapping, assemblies and variant calling, however, there is still a dire need for improvements in the higher level analysis such as NGS data organization, analysis of mutation patterns and Genome Wide Association Studies (GWAS). RESULTS: We present a high throughput pipeline for identifying cancer mutation targets, capable of processing billions of variations across thousands of samples. This pipeline is coupled with our Human Variation Database to provide more complex down stream analysis on the variations hosted in the database. Most notably, these analysis include finding significantly mutated regions across multiple genomes and regions with mutational preferences within certain types of cancers. The results of the analysis is presented in HTML summary reports that incorporate gene annotations from various resources for the reported regions. CONCLUSION: MuteProc is available for download through the Vancouver Short Read Analysis Package on Sourceforge: http://vancouvershortr.sourceforge.net. Instructions for use and a tutorial are provided on the accompanying wiki pages at https://sourceforge.net/apps/mediawiki/vancouvershortr/index.php?title=Pipeline_introduction.


Subject(s)
DNA Mutational Analysis/methods , Genes, Neoplasm , Mutation , Neoplasms/genetics , Software , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...