Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798344

ABSTRACT

The prefrontal cortex (PFC) is a region of the brain that in humans is involved in the production of higher-order functions such as cognition, emotion, perception, and behavior. Neurotransmission in the PFC produces higher-order functions by integrating information from other areas of the brain. At the foundation of neurotransmission, and by extension at the foundation of higher-order brain functions, are an untold number of coordinated molecular processes involving the DNA sequence variants in the genome, RNA transcripts in the transcriptome, and proteins in the proteome. These "multiomic" foundations are poorly understood in humans, perhaps in part because most modern studies that characterize the molecular state of the human PFC use tissue obtained when neurotransmission and higher-order brain functions have ceased (i.e., the postmortem state). Here, analyses are presented on data generated for the Living Brain Project (LBP) to investigate whether PFC tissue from individuals with intact higher-order brain function has characteristic multiomic foundations. Two complementary strategies were employed towards this end. The first strategy was to identify in PFC samples obtained from living study participants a signature of RNA transcript expression associated with neurotransmission measured intracranially at the time of PFC sampling, in some cases while participants performed a task engaging higher-order brain functions. The second strategy was to perform multiomic comparisons between PFC samples obtained from individuals with intact higher-order brain function at the time of sampling (i.e., living study participants) and PFC samples obtained in the postmortem state. RNA transcript expression within multiple PFC cell types was associated with fluctuations of dopaminergic, serotonergic, and/or noradrenergic neurotransmission in the substantia nigra measured while participants played a computer game that engaged higher-order brain functions. A subset of these associations - termed the "transcriptional program associated with neurotransmission" (TPAWN) - were reproduced in analyses of brain RNA transcript expression and intracranial neurotransmission data obtained from a second LBP cohort and from a cohort in an independent study. RNA transcripts involved in TPAWN were found to be (1) enriched for RNA transcripts associated with measures of neurotransmission in rodent and cell models, (2) enriched for RNA transcripts encoded by evolutionarily constrained genes, (3) depleted of RNA transcripts regulated by common DNA sequence variants, and (4) enriched for RNA transcripts implicated in higher-order brain functions by human population genetic studies. In PFC excitatory neurons of living study participants, higher expression of the genes in TPAWN tracked with higher expression of RNA transcripts that in rodent PFC samples are markers of a class of excitatory neurons that connect the PFC to deep brain structures. TPAWN was further reproduced by RNA transcript expression patterns differentiating living PFC samples from postmortem PFC samples, and significant differences between living and postmortem PFC samples were additionally observed with respect to (1) the expression of most primary RNA transcripts, mature RNA transcripts, and proteins, (2) the splicing of most primary RNA transcripts into mature RNA transcripts, (3) the patterns of co-expression between RNA transcripts and proteins, and (4) the effects of some DNA sequence variants on RNA transcript and protein expression. Taken together, this report highlights that studies of brain tissue obtained in a safe and ethical manner from large cohorts of living individuals can help advance understanding of the multiomic foundations of brain function.

2.
Sci Rep ; 14(1): 8856, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632350

ABSTRACT

Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines.


Subject(s)
Data Accuracy , Evoked Potentials , Humans , Bayes Theorem , Evoked Potentials/physiology , Electroencephalography/methods , Wakefulness
3.
Curr Biol ; 33(22): 5003-5010.e6, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37875110

ABSTRACT

The noradrenaline (NA) system is one of the brain's major neuromodulatory systems; it originates in a small midbrain nucleus, the locus coeruleus (LC), and projects widely throughout the brain.1,2 The LC-NA system is believed to regulate arousal and attention3,4 and is a pharmacological target in multiple clinical conditions.5,6,7 Yet our understanding of its role in health and disease has been impeded by a lack of direct recordings in humans. Here, we address this problem by showing that electrochemical estimates of sub-second NA dynamics can be obtained using clinical depth electrodes implanted for epilepsy monitoring. We made these recordings in the amygdala, an evolutionarily ancient structure that supports emotional processing8,9 and receives dense LC-NA projections,10 while patients (n = 3) performed a visual affective oddball task. The task was designed to induce different cognitive states, with the oddball stimuli involving emotionally evocative images,11 which varied in terms of arousal (low versus high) and valence (negative versus positive). Consistent with theory, the NA estimates tracked the emotional modulation of attention, with a stronger oddball response in a high-arousal state. Parallel estimates of pupil dilation, a common behavioral proxy for LC-NA activity,12 supported a hypothesis that pupil-NA coupling changes with cognitive state,13,14 with the pupil and NA estimates being positively correlated for oddball stimuli in a high-arousal but not a low-arousal state. Our study provides proof of concept that neuromodulator monitoring is now possible using depth electrodes in standard clinical use.


Subject(s)
Attention , Norepinephrine , Humans , Attention/physiology , Arousal/physiology , Amygdala , Brain , Locus Coeruleus/physiology , Pupil/physiology
4.
Ann Appl Stat ; 15(3): 1171-1193, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34616500

ABSTRACT

We propose to model time-varying periodic and oscillatory processes by means of a hidden Markov model where the states are defined through the spectral properties of a periodic regime. The number of states is unknown along with the relevant periodicities, the role and number of which may vary across states. We address this inference problem by a Bayesian nonparametric hidden Markov model assuming a sticky hierarchical Dirichlet process for the switching dynamics between different states while the periodicities characterizing each state are explored by means of a trans-dimensional Markov chain Monte Carlo sampling step. We develop the full Bayesian inference algorithm and illustrate the use of our proposed methodology for different simulation studies as well as an application related to respiratory research which focuses on the detection of apnea instances in human breathing traces.

5.
J Am Stat Assoc ; 115(531): 1320-1335, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-33814652

ABSTRACT

We propose a novel Bayesian methodology for analyzing nonstationary time series that exhibit oscillatory behavior. We approximate the time series using a piecewise oscillatory model with unknown periodicities, where our goal is to estimate the change-points while simultaneously identifying the potentially changing periodicities in the data. Our proposed methodology is based on a trans-dimensional Markov chain Monte Carlo algorithm that simultaneously updates the change-points and the periodicities relevant to any segment between them. We show that the proposed methodology successfully identifies time changing oscillatory behavior in two applications which are relevant to e-Health and sleep research, namely the occurrence of ultradian oscillations in human skin temperature during the time of night rest, and the detection of instances of sleep apnea in plethysmographic respiratory traces. Supplementary materials for this article are available online.

SELECTION OF CITATIONS
SEARCH DETAIL
...