Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent Educ ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558060

ABSTRACT

Technological progress leads to new advances in dental education. One of the applications involves the use of virtual and augmented reality as educational aids. The emerging question is to establish if and how these enhancements may prove beneficial to the overall student learning process. A review of recent literature was conducted with the aim of providing evidence for the development of relevant clinical guidelines. The proposed topic attempted to provide answers to the questions of (a) how participants perform when using haptic devices compared to traditional tooth preparation methods on typodonts, (b) how the use of simulators is perceived by both students and educators, and (c) what added value simulators may have in prosthetic dentistry training. The main findings of this study showed that participants expressed satisfaction with the educational experience, finding it both stimulating and very similar to the actual clinical environment. However, differences between haptic and conventional methods were also apparent. Haptics was a significant predictor of clinical crown performance. Significantly better results and shorter preparation times tended to increase with experience. In conclusion, self-directed learning appears to be beneficial in the clinical education that follows data-driven approach. At the pre-laboratory level, simulators may act as an initial familiarization instrument. At the preclinical level, they may aid in detecting students who require extra assistance, or to provide extra training hours for students lacking adequate competency to enter the clinical training phase.

2.
Dent Mater ; 37(5): 914-927, 2021 05.
Article in English | MEDLINE | ID: mdl-33691992

ABSTRACT

OBJECTIVES: A three-dimensional (3D) dentin/pulp tissue analogue, resembling the human natural tissue has been engineered in an in vitro setup, aiming to assess the cytocompatibility of resin-based dental restorative cements. METHODS: Stem Cells from Apical Papilla (SCAP) and Human Umbilical Vein Endothelial Cells (HUVEC) were embedded in Collagen-I/Fibrin hydrogels at 1:3 ratio within 24-well plates. Hanging culture inserts were placed over the hydrogels, housing an odontoblast-like cell layer and a human treated-dentin barrier. Shear modulus of the hydrogels at 3.5 and 5 mg/ml was evaluated by dynamic mechanical analysis. Eluates of two resin-based cements, a dual-cure- (Breeze™, Pentron: Cement-1/C1), and a self-adhesive cement (SpeedCEMplus™, Ivoclar-Vivadent: Cement-2/C2) were applied into the dentin/pulp tissue analogue after pre-stimulation with LPS. Cytocompatibility was assessed by MTT assay, live/dead staining and real-time PCR analysis. RESULTS: Both hydrogel concentrations showed similar shear moduli to the natural pulp until day (D) 7, while the 5 mg/ml-hydrogel substantially increased stiffness by D14. Both cements caused no significant toxicity to the dentin/pulp tissue analogue. C1 induced stimulation (p < 0.01) of cell viability (158 ± 3%, 72 h), while pre-stimulation with LPS attenuated this effect. C2 (±LPS) caused minor reduction of viability (15-20%, 24 h) that recovered at 72 h for the LPS+ group. Both cements caused upregulation of VEGF, ANGP-1, and downregulation of the respective receptors VEGFR-2 and Tie-1. SIGNIFICANCE: Both resin-based cements showed good cytocompatibility and triggered angiogenic response within the dentin/pulp tissue analogue, indicating initiation of pulp repair responses to the released xenobiotics.


Subject(s)
Dental Bonding , Dentin , Dental Cements , Endothelial Cells , Humans , Odontoblasts , Resin Cements/toxicity , Stem Cells , Tissue Engineering
3.
Stem Cell Rev Rep ; 17(3): 785-802, 2021 06.
Article in English | MEDLINE | ID: mdl-33145672

ABSTRACT

OBJECTIVE: Experimental procedures have been used to monitor cellular responses at the dentin/pulp interface. Aiming to divert from in vivo studies and oversimplified two-dimensional assays, three-dimensional (3D) models have been developed. This review provides an overview of existing literature, regarding 3D in vitro dentin/pulp reconstruction. MATERIAL & METHODS: PubMed, Scopus, Cochrane Library and Web of Science- were systematically searched for attributes between 1998 and 2020. The search focused on articles on the development of three-dimensional tools for the reconstruction of a dentin/pulp complex under in vitro conditions, which were then screened and qualitatively assessed. Article grouping according to mode of implementation, resulted in five categories: the customised cell perfusion chamber (CPC) (n = 8), the tooth bud model (TBM) (n = 3), the 3D dentin/pulp complex manufactured by tissue engineering (DPC) (n = 6), the entire tooth culture (ETC) (n = 4) and the tooth slice culture model (TSC) (n = 5). RESULTS: A total of 26 publications, applying nine and eight substances for pulp and dentin representation respectively, were included. Natural materials and dentin components were the most widely utilized. The most diverse category was the DPC, while the CPC group was the test with the highest longevity. The most consistent categories were the ETC and TSC models, while the TBM presented as the most complete de novo approach. CONCLUSIONS: All studies presented with experimental protocols with potential upgrades. Solving the limitations of each category will provide a complete in vitro testing and monitoring tool of dental responses to exogenous inputs. CLINICAL RELEVANCE: The 3D dentin/pulp complexes are valid supplementary tools for in vivo studies and clinical testing. Graphical Abstract.


Subject(s)
Tissue Engineering , Tooth , Dentin/physiology , Models, Theoretical , Tissue Engineering/methods
4.
Dent Mater ; 36(2): 229-248, 2020 02.
Article in English | MEDLINE | ID: mdl-31791732

ABSTRACT

OBJECTIVE: Two-dimensional (2D) in vitro models have been extensively utilized for cytotoxicity assessment of dental materials, but with certain limitations in terms of direct in vitro-in vivo extrapolation (IVIVE). Three-dimensional (3D) models seem more appropriate, recapitulating the structure of human tissues. This study established a 3D dentin/pulp analogue, as advanced cytotoxicity assessment tool of dental restorative materials (DentCytoTool). METHODS: DentCytoTool comprised two compartments: the upper, representing the dentin component, with a layer of odontoblast-like cells expanded on microporous membrane of a cell culture insert and covered by a treated dentin matrix; and the lower, representing a pulp analogue, incorporating HUVEC/SCAP co-cultures into collagen I/fibrin hydrogels. Representative resinous monomers (HEMA: 1-8mM; TEGDMA: 0.5-5mM) and bacterial components (LPS: 1µg/ml) were applied into the construct. Cytotoxicity was assessed by MTT and LDH assays, live/dead staining and real-time PCR for odontogenesis- and angiogenesis-related markers. RESULTS: DentCytoTool supported cell viability and promoted capillary-like network formation inside the pulp analogue. LPS induced expression of odontogenesis-related markers (RUNX2, ALP, DSPP) without compromising viability of the odontoblast-like cells, while co-treatment with LPS and resin monomers induced cytotoxic effects (live/dead staining, MTT and LDH assays) in cells of both upper and lower compartments and reduced expression angiogenesis-related markers (VEGF, VEGFR2, ANGPT-1, Tie-2, PECAM-1) in a concentration- and time- dependent manner. LPS treatment aggravated TEGDMA-induced and -in certain concentrations (2-4mM)- HEMA-induced cytotoxicity. SIGNIFICANCE: DentCytoTool represents a promising tissue-engineering-based cytotoxicity assessment tool, providing more insight into the mechanistic aspects of interactions of dental materials to the dentin/pulp complex.


Subject(s)
Stem Cells , Tissue Engineering , Cell Differentiation , Cells, Cultured , Dental Materials , Dental Pulp , Dentin , Humans
5.
J Endod ; 45(5): 584-590, 2019 May.
Article in English | MEDLINE | ID: mdl-30954281

ABSTRACT

INTRODUCTION: Previous works have shown that human pulp fibroblasts synthetize all complement components. Local complement activation in the dental pulp is known to be involved in inflammation and regeneration and also in pathogen destruction through membrane attack complex formation. Bacterial elimination by complement-mediated phagocytosis implies microorganism opsonization with the complement C3b protein, which is recognized by specific phagocytic cell CR1 receptors for subsequent intracellular destruction. This work was designed to find out whether pulp fibroblasts produce C3b and check its subsequent implication in bacteria phagocytosis. METHODS: The expression of C3b was investigated in carious and healthy human pulp tissues. To simulate a bacterial infection in vitro, cultured human pulp fibroblasts were stimulated with lipoteichoic acid, and C3b secretion was quantified by an enzyme-linked immunosorbent assay. C3b fixation on bacteria (opsonization) and the inflammatory THP-1 cell complement receptor 1 was studied by immunofluorescence. A gentamycin protection assay was used to check the implication of C3b secretion by fibroblasts in bacteria phagocytosis. RESULTS: Pulp cells constitutively express C3b in vivo, and cultured pulp fibroblasts produce C3b. We observed a fixation of this C3b protein on the bacterial surface (opsonization) and the THP-1 CR1 receptor. This recognition leads to a significant increase in bacteria phagocytosis. CONCLUSIONS: These results showed that pulp fibroblasts mediate the process of phagocytosis by producing the complement C3b protein and opsonizing bacteria. This highlights a significant role of fibroblasts in the dental pulp local regulation of inflammation.


Subject(s)
Complement Activation , Dental Pulp , Fibroblasts , Phagocytosis , Dental Pulp/pathology , Humans
6.
Int J Prosthodont ; 30(3): 280­285, 2017.
Article in English | MEDLINE | ID: mdl-28319210

ABSTRACT

Oculo-dento-digital dysplasia (ODDD) is a congenital disorder manifesting with multiple phenotypic abnormalities involving the face, eyes, teeth, and limbs in addition to neurologic symptomatology. This report aims to present a female patient with ODDD who was referred due to extensive oral restorative needs. The presence of hypoplastic enamel triggered further evaluation. Characteristic facies with hypoplastic alae nasi and syndactyly offered greater insight into the phenotype of the syndrome. Clinical suspicion was confirmed by genetic sequencing revealing heterozygous mutation in GJA1. It is important to be aware of genetic disorders associated with characteristic dental malformations to offer appropriate counseling and treatment.


Subject(s)
Connexin 43/genetics , Craniofacial Abnormalities/genetics , Eye Abnormalities/genetics , Foot Deformities, Congenital/genetics , Mouth Rehabilitation/methods , Syndactyly/genetics , Tooth Abnormalities/genetics , Adult , Female , Humans , Mutation , Phenotype
7.
Lasers Med Sci ; 32(1): 201-210, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27785631

ABSTRACT

This study aimed to investigate the potential of low-level laser irradiation (LLLI) to promote odontogenic differentiation and biomineralization by dental pulp stem cells (DPSCs) seeded inside bioceramic scaffolds. Mg-based, Zn-doped bioceramic scaffolds, synthesized by the sol-gel technique, were spotted with DPSCs and exposed to LLLI at 660 nm with maximum output power of 140 mw at fluencies (a) 2 and 4 J/cm2 to evaluate cell viability/proliferation by the MTT assay and (b) 4 J/cm2 to evaluate cell differentiation, using real-time PCR (expression of odontogenic markers) and a p-nitrophenylphosphate (pNPP)-based assay for alkaline phosphatase (ALP) activity measurement. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were used for structural/chemical characterization of the regenerated tissues. Exposure of the DPSCs/scaffold complexes to the proposed LLLI scheme was associated with statistically significant increase of odontogenesis-related markers (bone morphogenetic protein 2 (BMP-2): 22.4-fold, dentin sialophosphoprotein (DSPP): 28.4-fold, Osterix: 18.5-fold, and Runt-related transcription factor 2 (Runx2): 3.4-fold). ALP activity was significantly increased at 3 and 7 days inside the irradiated compared to that in the non-irradiated SC/DPSC complexes, but gradually decreased until 14 days. Newly formed Ca-P tissue was formed on the SC/DPSC complexes after 28 days of culture that attained the characteristics of bioapatite. Overall, LLLI treatment proved to be beneficial for odontogenic differentiation and biomineralization of DPSCs inside the bioceramic scaffolds, making this therapeutic modality promising for targeted dentin engineering.


Subject(s)
Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Dental Pulp/cytology , Low-Level Light Therapy , Magnesium/pharmacology , Odontogenesis/drug effects , Stem Cells/cytology , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Cells, Cultured , Ceramics/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Real-Time Polymerase Chain Reaction , Stem Cells/ultrastructure
8.
Dent Mater ; 32(8): e159-75, 2016 08.
Article in English | MEDLINE | ID: mdl-27298239

ABSTRACT

OBJECTIVE: This study aimed to investigate the potential of Mg-based bioceramic scaffolds combined with human treated-dentin matrices (hTDMs) and dentinogenesis-related morphogens to promote odontogenic differentiation and dentin-like tissue formation by Dental Pulp Stem Cells-DPSCs. METHODS: DPSC cultures were established and characterized by flow cytometry. Experimental cavities were prepared inside crowns of extracted teeth and demineralized by EDTA (hTDMs). Zn-doped, Mg-based bioceramic scaffolds, synthesized by the sol-gel technique, were hosted inside the hTDMs. DPSCs were spotted inside the hTDMs/scaffold constructs with/without additional exposure to DMP-1 or BMP-2 (100ng/ml, 24h). Scanning Electron Microscopy-SEM, live/dead fluorescence staining and MTT assay were used to evaluate cell attachment and viability; Real time PCR for expression of osteo/odontogenic markers; Inductively Coupled Plasma-Atomic Emission Spectrometry-ICP/AES for scaffold elemental release analysis; ELISA for hTDM growth factor release analysis; SEM and X-ray Diffraction-XRD for structural/chemical characterization of the regenerated tissues. RESULTS: Scaffolds constantly released low concentrations of Mg(2+), Ca(2+), Zn(2+) and Si(4+), while hTDMs growth factors, like DMP-1, BMP-2 and TGFß-1. hTDMs/scaffold constructs supported DPSC viability, inducing their rapid odontogenic shift, indicated by upregulation of DSPP, BMP-2, osteocalcin and osterix expression. Newly-formed Ca-P tissue overspread the scaffolds partially transforming into bioapatite. Exposure to DMP-1 or BMP-2 pronouncedly enhanced odontogenic differentiation phenomena. SIGNIFICANCE: This is the first study to validate that combining the bioactivity and ion releasing properties of bioceramic materials with growth factor release by treated natural dentin further supported by exogenous addition of key dentinogenesis-related morphogens (DMP-1, BMP-2) can be a promising strategy for targeted dentin regeneration.


Subject(s)
Cell Differentiation , Dental Pulp , Dentin , Regeneration , Tissue Scaffolds , Zinc , Bone Morphogenetic Protein 2 , Cells, Cultured , Humans , Stem Cells
9.
Int J Biomater ; 2016: 3858301, 2016.
Article in English | MEDLINE | ID: mdl-26981124

ABSTRACT

Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg(2+) and Cu(2+) or Zn(2+), ions known for their antimicrobial properties, were synthesized by the foam replica technique and tested regarding their bioactive response in SBF, mechanical properties, degradation, and porosity. Finally their ability to support the attachment and long-term proliferation of Dental Pulp Stem Cells (DPSCs) was also evaluated. The results showed that conversely to their bioactive response in SBF solution, Zn-doped scaffolds proved to respond adequately regarding their mechanical strength and to be efficient regarding their biological response, in comparison to Cu-doped scaffolds, which makes them promising candidates for targeted dental stem cell odontogenic differentiation and calcified dental tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...